We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Siemens Healthineers - Laboratory Diagnostics

Provides advanced laboratory diagnostics solutions for the medical industry read more Featured Products: More products

Download Mobile App





AI Predicts Multiple Sclerosis Risk, Flags Potentially Contaminated Lab Results

By LabMedica International staff writers
Posted on 27 Jul 2023

New research presented at the 2023 AACC Annual Scientific Meeting & Clinical Lab Expo has shown that an artificial intelligence (AI) model can predict the likelihood of individuals developing multiple sclerosis (MS) years before its diagnosis. More...

Such prediction could allow for earlier treatment initiation, potentially slowing the progression of this neurological disorder. Breaking results from another study have revealed that machine learning (ML) can be instrumental in identifying laboratory samples contaminated with intravenous fluids. This important discovery could help minimize laboratory errors that tend to slow down diagnosis, increase healthcare expenses, and lead to incorrect treatments. Both these studies indicate the huge strides made in the use of AI and ML to enhance patient care.

MS, a disease of the nervous system, affects over 2.8 million people globally. While its exact cause remains unclear, the disease is linked to autoimmunity, where the immune system mistakenly attacks healthy cells, as well as to genetics, the Epstein-Barr virus, and other factors. Currently, MS diagnosis relies on imaging, cerebrospinal fluid studies, and clinical history. However, there is a need for early-detection methods as they could help start treatment earlier, thus slowing down disease progression.

In the first study, a team of researchers at Siemens Healthineers (Erlangen, Germany) trained machine-learning models to predict the risk of MS. Over 3,000 data sets from the electronic health records of MS patients and others were used for the study. Their "random forest model" parses data on a patient’s age, gender, blood, and metabolic markers, obtained up to three years prior to diagnosis. The model demonstrated high accuracy and strong predictive ability. The key factors contributing to the model's ability to identify high-risk patients were blood measurements of neutrophils, red blood cells, and other markers. These predictions remained consistent up to three years before diagnosis.

“Our model’s performance suggests that AI-based prediction models could identify the risk for multiple sclerosis years before neurological symptoms appear,” said Raj Gopalan, MD, at Siemens Healthineers who led the research team. “This could reveal which patients should be monitored for periodic neurological and cognitive exams when symptoms appear. In addition, early confirmation of the diagnosis with imaging and cerebrospinal fluid studies could facilitate disease-modifying treatment.”

In a separate study, a research team led by scientists at Washington University School of Medicine in St. Louis (St. Louis, MO, USA) used a "mixture-of-experts" modeling technique to develop an ML-based system capable of detecting instances of IV fluid contamination that were missed by manual methods. Currently, scientists are utilizing ML to identify potential contaminations in lab samples that could affect test results. When samples are collected directly from IV catheters instead of a fresh blood draw, the fluid within can lead to false lab results that delay diagnosis, increase healthcare costs, and result in incorrect treatments. Existing contamination detection methods are not always reliable and often require technicians to undertake extensive manual analysis.

The research team gathered over 9.6 million chemistry results from patients and simulated IV fluid contamination in some samples with common IV solutions. By training different machine-learning models using the simulated results, they generated a final set of predictions. The models detected significant contamination in several thousand samples. The newly-developed pipeline is capable of detecting 5 to 10 times more contaminated samples compared to the existing methods. A vast majority of these tests evaded being previously flagged using manual methods –up to 94% in the case of samples contaminated with lactated Ringer's solution.

“While this won’t immediately reduce the number of contaminated tests, it will hopefully substantially reduce the operational and clinical impact of these events when they do happen, and provide us with a better quality metric with which we can prioritize areas for improvement initiatives,” said Nicholas Spies, MD, at Washington University School of Medicine in St. Louis, who led the research team.

Related Links:
Siemens Healthineers 
Washington University School of Medicine in St. Louis 


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.