We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

By LabMedica International staff writers
Posted on 31 Mar 2025

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. More...

The fluorescence in situ hybridization (FISH) technique facilitates the swift detection and identification of microbes by leveraging differences in their genomic sequences, without the need for time-consuming culturing or sequencing. However, the growing volume of microbial genomic data has made it increasingly difficult to design appropriate probes for microbial mixtures. Now, a new set of peptide nucleic acid (PNA)-based FISH probes has been developed, offering optimal target specificity by analyzing variations in the 16S ribosomal RNA sequence across bacterial species. Due to their superior ability to penetrate bacteria and higher sensitivity to mismatches, these PNA probes successfully identified seven bacterial species commonly associated with bacteremia with an accuracy ranging from 96% to 99.9% using the optimized FISH technique. Detection is enhanced by Förster resonance energy transfer (FRET) between adjacent binding PNA probes, which prevents cross-reactivity between species. This approach allows for rapid, sequential identification of bacterial species, utilizing chemically cleavable fluorophores, without sacrificing accuracy. Thanks to their exceptional accuracy and speed, these techniques hold significant promise for clinical applications.

A team of researchers from UNIST (Ulsan, Republic of Korea) has developed a diagnostic method capable of identifying infectious pathogens with nearly 100% accuracy in under three hours. This method is far faster and more accurate than traditional bacterial culture and polymerase chain reaction (PCR) analysis, offering potential to reduce mortality rates in critical conditions such as sepsis, where the prompt administration of antibiotics is essential. In their study, published in Biosensors and Bioelectronics, the researchers introduced a new diagnostic approach that uses PNA-based probes to detect pathogens. The FISH technique works by detecting fluorescent signals generated when the probe molecules bind to specific bacterial genetic sequences. This innovative method utilizes two PNA molecules at once, with the researchers designing PNA sequences that specifically target the ribosomal RNA of particular bacterial species by analyzing the genomic sequences of 20,000 species.

PNA exhibits greater sensitivity to sequence mismatches compared to conventional DNA-based probes, and it has superior penetration through bacterial cell walls. Furthermore, the requirement for both PNA molecules to bind to their target site before generating a signal significantly reduces the risk of crosstalk, thereby enhancing accuracy when multiple bacterial strains overlap. In tests, the technology successfully detected seven bacterial species—including E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus—with over 99% accuracy for all species except Staphylococcus aureus, which was detected with an accuracy of 96.3%. The method’s effectiveness was also validated in mixed bacterial samples, where Enterococcus and E. coli were identified with over 99% accuracy when tested together. The research team plans further experiments using blood samples from actual patients to explore the clinical applications of this method.

“This method will aid in the diagnosis of infections requiring immediate antibiotic treatment, such as sepsis, urinary tract infections, and pneumonia, while also helping to reduce unnecessary antibiotic usage,” said Professor Hajun Kim from the Department of Biomedical Engineering at UNIST.

Related Links:
UNIST


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.