We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

By LabMedica International staff writers
Posted on 09 Apr 2025

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. More...

These infections are more difficult to treat, often necessitate costlier or more toxic medications, and lead to extended hospital stays and higher mortality rates. In 2021, the World Health Organization (WHO) reported that 450,000 people developed multidrug-resistant tuberculosis, with a treatment success rate falling to just 57%. Current resistance detection methods, employed by organizations such as the WHO, either take too long—such as culture-based testing—or fail to detect rare mutations, as seen with some DNA-based tests. Now, a new artificial intelligence (AI)-based method has been developed to more accurately detect genetic markers of antibiotic resistance in Mycobacterium tuberculosis and Staphylococcus aureus, which could facilitate faster and more effective treatment.

Researchers at Tulane University (New Orleans, LA, USA) have introduced an innovative Group Association Model (GAM), leveraging machine learning to identify genetic mutations associated with drug resistance. Unlike traditional tools that might mistakenly link unrelated mutations to resistance, GAM operates without relying on prior knowledge of resistance mechanisms, making it more adaptable and capable of identifying previously undetected genetic alterations. The model, detailed in Nature Communications, addresses both the slow diagnostic processes and the failure to detect rare mutations by analyzing whole genome sequences. It compares groups of bacterial strains with varying resistance profiles to identify genetic changes that consistently indicate resistance to specific drugs.

In their study, the researchers applied GAM to over 7,000 strains of Mtb and nearly 4,000 strains of S. aureus, identifying crucial mutations linked to resistance. They discovered that GAM not only matched or surpassed the accuracy of the WHO’s resistance database but also significantly reduced false positives, which are incorrect markers of resistance that could lead to improper treatment. The combination of machine learning with GAM also enhanced its predictive capabilities, particularly when working with limited or incomplete data. In validation tests using clinical samples from China, the machine-learning-enhanced model outperformed the WHO-based methods in predicting resistance to critical first-line antibiotics. This breakthrough is important because early detection of resistance allows doctors to adjust treatment regimens appropriately, preventing the infection from worsening or spreading. The model's ability to identify resistance without requiring expert-defined rules also suggests it could be applied to other bacterial infections.

“Current genetic tests might wrongly classify bacteria as resistant, affecting patient care,” said lead author Julian Saliba, a graduate student in the Tulane University Center for Cellular and Molecular Diagnostics. “Our method provides a clearer picture of which mutations actually cause resistance, reducing misdiagnoses and unnecessary changes to treatment.”


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.