We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




First AI-Powered Blood Test Identifies Patients in Earliest Stage of Breast Cancer

By LabMedica International staff writers
Posted on 16 Dec 2024

Standard breast cancer tests typically include a physical exam, X-ray or ultrasound scans, and a biopsy to analyze tissue samples. More...

Current early detection strategies often rely on screening based on age or risk factors. Now, a new method promises to enhance early detection and monitoring of breast cancer, potentially leading to a screening test for multiple types of cancer.

Developed by researchers at The University of Edinburgh (Scotland, UK), the new screening method combines laser analysis with artificial intelligence (AI). This innovative approach is the first to detect breast cancer at its earliest stage, known as stage 1a, which is undetectable with current tests. The method uses Raman spectroscopy, a laser analysis technique, paired with machine learning, a form of AI. While similar techniques have been trialed for other cancers, they could only detect disease starting at stage two. The process involves shining a laser into blood plasma from patients, and then analyzing how the light interacts with the blood using a spectrometer. This reveals minute changes in the chemical composition of cells and tissues, which serve as early disease indicators. A machine learning algorithm then interprets the data, identifying patterns and classifying the samples.

In a pilot study with 12 breast cancer patient samples and 12 healthy control samples, the technique identified breast cancer at stage 1a with 98% accuracy. The study, published in Journal of Biophotonics, also demonstrated the method’s ability to distinguish between the four main subtypes of breast cancer with over 90% accuracy. This could enable more personalized and effective treatments. The researchers believe that implementing this as a screening tool could identify more patients at the earliest stages of breast cancer, improving treatment success. They plan to expand the study to include more participants and test early detection for other types of cancer.

“Most deaths from cancer occur following a late-stage diagnosis after symptoms become apparent, so a future screening test for multiple cancer types could find these at a stage where they can be far more easily treated,” said Dr. Andy Downes, of the University of Edinburgh’s School of Engineering, who led the study. “Early diagnosis is key to long-term survival, and we finally have the technology required. We just need to apply it to other cancer types and build up a database, before this can be used as a multi-cancer test.”


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.