Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Combined Biosensor Strategy Detects Infectious Pathogens

By LabMedica International staff writers
Posted on 14 Jun 2013
A method has been developed that combines deoxyribozyme technology with gold nanoparticles to give a simple point-of-care (POC) diagnostic technique that can be used in remote settings.

The technique merges the colorimetric coupling of surface plasmons of gold nanoparticles (GNPs) with deoxyribozyme (DNAzyme) signal amplification technology to create a fast and simple detection method for genetic targets with a simple colorimetric readout.

Chemical engineers at the University of Toronto (ON, Canada) implemented a genetic sensing assay in a simple two-step system. More...
In the amplification step, a buffered mix of multicomponent nucleic acid enzymes (MNAzymes) and linkers is added to the sample solution and incubated at 50 °C for one hour. If target sequences are present, they bind and activate the MNAzymes. Each active MNAzyme in turn catalyzes cleavage of multiple linkers, which effectively translates into signal amplification.

Any linkers that remained uncleaved caused aggregation of the corresponding GNP pairs, turning the solution purple. In contrast, linkers cleaved by target-activated MNAzymes were not able to cross-link the associated GNP pairs, and solution remained red. In one test for the pathogen Neisseria gonorrhoeae, the mixtures in the specific detection tubes remained red. Following this method, the scientist successfully detected five targets simultaneously. In addition, the assay with lyophilized components was used to correctly identify gonorrhea, malaria, and hepatitis B virus sequences in a sample mixture that contained three out of the five targets. All RNA-containing Linker DNA strands were obtained from Integrated DNA Technologies (Coralville, IA, USA) in purified lyophilized form and all other DNA sequences were from BioBasic (Markham, ON, Canada).

The authors concluded that the assay can detect multiple genetic sequences in parallel and that it could be easily applied to other nucleic acid targets. The color-based readout does not require any complex equipment and uses stable and cost-effective reagents, making this approach particularly suitable for POC testing. Warren C. W. Chan, PhD, a professor in nanobiotechnology and the senior author, said, “There's been a lot of emphasis in developing simple diagnostics. The question is how do you make it simple enough, portable enough? Gold is the best medium, because it's easy to see. It emits a very intense color." The article was published on March 11, 2013, in the journal Angewandte Chemie.

Related Links:

University of Toronto

Integrated DNA Technologies

BioBasic





Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.