Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Chip Identifies Toxicity as a Biological Quality

By LabMedica International staff writers
Posted on 30 Jul 2012
A biosensor detects toxicity quickly and accurately, generating low false positive and false negative readings.

Called the Dip Chip, the device contains microbes designed to exhibit a biological reaction to toxic chemicals, emulating the biological responses of humans or animals.

Invented by Prof. More...
Yosi Shacham-Diamand, vice dean of Tel Aviv University's Faculty of Engineering (Ramat Aviv, Israel) together with Prof. Shimshon Belkin of the Institute of Life Sciences at the Hebrew University of Jerusalem (Givat Ram, Jerusalem, Israel), the device contains microbes designed to exhibit a biological reaction to toxic chemicals, emulating the biological responses of humans or animals. The biological reaction is converted into an electronic signal that can be read by the user.

"In my lab, we developed a method for communicating with the microbes, converting this biological response to electrical signals," Prof. Shacham-Diamand explained. The device, which looks like a dipstick, immobilizes these specially produced microbes next to the sensing electrodes. Once the microbes come into contact with a questionable substance they produce a chemical signal that is converted to an electrical current by a device that can interpret the signals, producing a binary toxic or not toxic diagnosis.

The new chips are based on genetically modified microbes developed in Prof. Belkin's lab. When the modified microbes are exposed to toxic or poisonous materials, they produce a measurable biochemical reaction, which is converted into to electrical signals.

The Dip Chip is designed to alert the user to overall toxicity. Because the chip measures general toxicity, it will pick up on any and all toxic materials -- even those that have not been discovered or invented. Beyond their ability to find toxic chemicals in the field, these chips can also be put to use in the cosmetics or pharmaceutical industries, said Prof. Shacham-Diamand.

Related Links:
Tel Aviv University's Faculty of Engineering
Institute of Life Sciences at the Hebrew University of Jerusalem



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.