We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cells in Blood Manipulated and Sorted Via Ferrofluids

By LabMedica International staff writers
Posted on 16 Dec 2009
Technology that uses magnetizable liquids (ferrofluids) to rapidly manipulate and sort different cells in blood, could dramatically improve the speed and sensitivity of tests used to detect cancer biomarkers, blood disorders, viruses, and other diseases. More...
The new method does not require attaching biomarkers, or labels to the cells thus eliminating labor-intensive preparation or postprocessing.

Ferrofluids comprise magnetic nanoparticles suspended throughout a liquid carrier. A biocompatible ferrofluid--one with the right pH level and salinity so that human cells can survive in it for several hours—was developed together with a device that has integrated electrodes that generate a magnetic field pattern.

The magnetic field attracts the nanoparticles in the ferrofluid, effectively pushing and shuffling the much larger, nonmagnetic cells along specific channels. Depending on the frequency of the magnetic field applied different types of cells are manipulated and sorted according to their size, elasticity, and shape.

Being able to effectively sort and move cells with this technique could allow for much greater efficiency in disease detection. Many of today's tests require hours or even days to complete, because the concentration of diseased cells in a blood sample may be so low that it takes a long time for them to randomly bump into the sensors. For example, in early-stage cancer there could be one tumor cell for every billion healthy cells, making the cells extremely difficult to detect.

The new technology was developed by a team of scientists led by Hur Koser, associate professor at the Yale School of Engineering & Applied Science (New Haven, CT, USA) together with colleagues at the Deutsches Elektronen-Synchrotron (DESY; Hamburg, Germany) and University of Georgia (Athens, GA, USA). The findings were published in the December 7, 2009 online edition of the Proceedings of the National [U.S.] Academy of Sciences (PNAS).

Related Links:
Yale School of Engineering & Applied Science
Deutsches Elektronen-Synchrotron
University of Georgia


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.