Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Successful Transport of Blood Samples with Small Drones

By LabMedica International staff writers
Posted on 17 Aug 2015
A proof-of-concept, initial study has shown that small unmanned aerial systems (UAS) could potentially be used to transport clinical blood specimens for diagnostics without damage to the specimens.

In a first rigorous examination published about the impact of drone transport on biological samples, a team of clinical researchers and engineers, led by Timothy Kien Amukele, MD, PhD, pathologist at Johns Hopkins University School of Medicine (Baltimore, MD, USA) and director of a collaboration with Makerere University in Uganda, found that results of common, routine tests on the blood samples were not affected by up to 40 minutes of sample-travel in hobby-sized drones. This could especially aid millions of people in developing nations where most tests are currently done by dedicated laboratories that can be scores of miles from remote clinics in rural and economically impoverished areas that lack, for example, good roads.

“Biological samples can be very sensitive and fragile,” said Dr. Amukele. That sensitivity makes even the pneumatic-tube systems used by many hospitals, for example, unsuitable for transporting blood for certain purposes. Of particular concern related to sample transport in drones is the sudden acceleration that marks the launch of the vehicle and the jostling when the drone lands on its belly. “Such movements could have destroyed blood cells or prompted blood to coagulate and I thought all kinds of blood tests might be affected, but our study shows they weren’t,” he added.

For the study, total of 6 blood samples were collected from each of 56 healthy adult volunteers at Johns Hopkins Hospital. Samples were driven to a flight site an hour’s drive from the hospital on days when the temperature was moderate. There, half the samples were held stationary (non-flight); the other half were packaged for protection during the in-flight environment and to prevent leakage, then loaded into a hand-launched fixed-wing drone and flown for periods of 6–38 minutes. Owing to Federal Aviation Administration (FAA) rules, the flights were conducted in an unpopulated area, kept below 100 meters and in the line-of-sight of the certified drone pilot.

Samples were driven back from the flight-field to the Johns Hopkins Hospital Core Laboratory, where 33 of the most common chemistry, hematology, and coagulation tests were performed (tests that together account for around 80% of all such tests performed), including for sodium, glucose, and red blood cell count.

Comparing lab results of the flown vs. non-flown samples from each volunteer showed that these flights essentially had no impact, although the precision of one blood test—for total carbon dioxide (the bicarbonate test)—did differ for some samples pairs. This may be because the blood sat for up to 8 hours before being tested, but whether the out-of-range results were due to this time lag or to the drone transport is unknown. Nevertheless, there were no consistent differences in results between the flown vs. non-flown blood.

“The ideal way to test that would be to fly the blood around immediately after drawing it, but neither the FAA nor Johns Hopkins would like drones flying around the hospital,” said Dr. Amukele.

The likely next step is a pilot study in Africa where clinics are sometimes 60 or more miles away from labs. “A drone could go 100 km in 40 minutes,” said Dr. Amukele, “They’re less expensive than motorcycles, are not subject to traffic delays, and the technology already exists for the drone to be programmed to “home” to certain GPS coordinates, like a carrier pigeon.”

Drones have already been tested as carriers of medicines to clinics in remote areas, but whether and how drones will be used to carry medicines and potentially infectious patient specimens over more populated areas will depend on laws and regulations.

The study, by Amukele TK, et al, was published July 29, 2015, in the journal PLOS One.

Related Links:

Johns Hopkins University School of Medicine



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.