We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Butterfly Wings-Inspired Imaging Technique Enables Faster Cancer Diagnosis

By LabMedica International staff writers
Posted on 24 Feb 2025

Fibrosis, which refers to the accumulation of fibrous tissue, is a significant characteristic of various diseases, including neurodegenerative conditions, heart disease, and cancer. More...

In oncology, determining the extent of fibrosis in a biopsy can help assess whether a cancer is in its early or advanced stages. However, distinguishing between these stages using current clinical methods is a significant challenge. These methods typically involve staining tissues to highlight key structures in a tumor biopsy, but the results can be subjective—interpretations may vary between pathologists. While more advanced imaging techniques can provide more detailed insights, they often require expensive, specialized equipment that is not available in many clinics. Now, researchers have discovered an unexpected ally in the effort to make cancer diagnosis faster, more accurate, and more accessible worldwide: the Morpho butterfly.

Renowned for its vibrant blue wings, the Morpho butterfly’s brilliance is not due to pigments but to microscopic structures that manipulate light. Researchers at the University of California San Diego (La Jolla, CA, USA) are utilizing these same microstructures to gain detailed insights into the fibrous composition of cancer biopsy samples—without the need for chemical stains or costly imaging systems. In a study published in Advanced Materials, the team demonstrated that by placing a biopsy sample atop a Morpho butterfly wing and observing it under a standard microscope, they could determine whether the tumor’s structure suggests early- or late-stage cancer—without relying on staining or expensive imaging devices. The micro- and nanostructures of the wing interact strongly with polarized light, a type of light that moves in a specific direction. Collagen fibers, which are a vital component of fibrotic tissue, also respond to polarized light, though their signals are weak. By positioning a biopsy sample over a section of a Morpho butterfly wing, the researchers amplified these weak signals, making it easier to examine the density and arrangement of collagen fibers.

The amplified signals can then be interpreted to quantify the density and organization of the collagen fibers in the sample. To achieve this, the researchers developed a mathematical model based on Jones calculus, a technique used to analyze polarized light. The model correlates the intensity of the light with the density and structure of collagen fibers, providing a measurable indicator of fibrosis in the tissue. The researchers applied this method to analyze both collagen-dense and collagen-sparse human breast cancer biopsy samples. Their findings were comparable to conventional staining techniques and a high-cost advanced imaging method. Importantly, this technique can be performed with standard optical microscopes that are already available in most clinics. Additionally, it is more objective and quantitative than existing methods. Although this study focused on breast cancer, the researchers believe this approach could be extended to other fibrotic diseases as well.

“Essentially, we’re trying to expand on these procedures with a stain-free alternative that requires nothing more than a standard optical microscope and a piece of a Morpho wing,” said Paula Kirya, a mechanical engineering graduate student at UC San Diego and the study’s first author. “In many parts of the world, early cancer screening is a challenge because of resource limitations. If we can provide a simpler and more accessible tool, we can help more patients get diagnosed before their cancers reach aggressive stages.”


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.