Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Revolutionary AI Tool Transforms Disease Visualization

By LabMedica International staff writers
Posted on 10 Feb 2025

Genes serve as the body's blueprint, while proteins execute the instructions within those blueprints to maintain cell function. More...

Occasionally, alterations in these instructions—known as mutations—can interfere with this process and cause disease. Omics refers to the study of genes, proteins, and other molecular data to explore the body's functions and how diseases evolve. Now, an artificial intelligence (AI) tool is assisting in converting vast, complex biological data into two-dimensional circular visuals. By mapping this data, the tool might offer clinicians and researchers a novel method for visualizing disease patterns, such as those found in cancer and neurological disorders, which could aid in directing personalized treatments. Additionally, it may provide an intuitive means of exploring disease mechanisms and interactions.

Developed by researchers at Mayo Clinic (Rochester, MN, USA), the tool called OmicsFootPrint helps to clarify these complexities by transforming data—such as gene activity, mutations, and protein levels—into vibrant, circular maps that offer a clearer understanding of what’s occurring within the body. In their study, the researchers employed OmicsFootPrint to examine drug responses and cancer multi-omics data. The tool successfully distinguished between two types of breast cancer—lobular and ductal carcinomas—with an average accuracy of 87%. In lung cancer, it showed over 95% accuracy in identifying two types: adenocarcinoma and squamous cell carcinoma. The findings, published in Nucleic Acids Research, revealed that combining various types of molecular data yields more accurate results than using just a single type.

The OmicsFootPrint also demonstrates promise in generating meaningful insights even with limited datasets. It utilizes advanced AI techniques that learn from existing data and apply this knowledge to new situations, a process known as transfer learning. For instance, it assisted researchers in achieving over 95% accuracy in identifying lung cancer subtypes with less than 20% of the usual data volume. To further enhance its accuracy and insights, the OmicsFootPrint framework incorporates a sophisticated method called SHAP (SHapley Additive exPlanations). SHAP highlights the key markers, genes, or proteins that impact the results, aiding researchers in understanding the underlying factors driving disease patterns. In addition to research, OmicsFootPrint is also intended for clinical use. It compresses large biological datasets into compact images that occupy only 2% of the original storage space. This compression could simplify the integration of the images into electronic medical records, potentially guiding future patient care. The research team is working on expanding OmicsFootPrint to explore additional diseases, including neurological conditions and other complex disorders. They are also focusing on updates to enhance the tool's accuracy and flexibility, such as the ability to identify new disease markers and drug targets.

"Data becomes most powerful when you can see the story it's telling," says Krishna Rani Kalari, Ph.D., lead author of the study and associate professor of biomedical informatics at Mayo Clinic's Center for Individualized Medicine. "The OmicsFootPrint could open doors to discoveries we haven't been able to achieve before."


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.