Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New Metabolite Detection Method Using DNA Sequencing Could Transform Diagnostics

By LabMedica International staff writers
Posted on 05 Feb 2025

Metabolites play a vital role as biomarkers that provide insights into our health, and when their levels go awry, it can lead to diseases such as diabetes and phenylketonuria. More...

Quantifying metabolites remains challenging due to their biochemical diversity, making them difficult to amplify using methods like PCR. The major hurdle in metabolomics is to efficiently measure a broad range of molecules across various samples, such as tissues, plasma, or single cells, rapidly and effectively. Researchers have now created a method that leverages DNA sequencing to measure metabolite or drug levels, thus incorporating the capabilities of DNA sequencing into metabolomics.

The new DNA sequencing-based approach for metabolite measurement was developed by scientists at the University of Toronto (Ontario, Canada), and their findings were published in Nature Biotechnology. This method facilitates the swift and precise analysis of biological compounds, including sugars, vitamins, hormones, and numerous other metabolites crucial to health. The novel platform for small molecule sequencing, named “smol-seq,” utilizes short DNA sequences called aptamers to detect metabolites. Each aptamer is specifically engineered to bind to a target metabolite and carry a unique DNA barcode. When an aptamer binds to its designated target, the aptamer’s structure changes and releases its DNA barcode. For instance, an aptamer designed to detect glucose releases one barcode, while an aptamer targeting the stress hormone cortisol releases a distinct barcode. By sequencing these released barcodes, researchers can determine which aptamers have successfully found their targets. The more of a metabolite present in the sample, the more barcodes are released, providing a way to measure the concentration of various molecules within a mixture.

Although aptamers have been previously used to measure metabolites, those methods generally only allowed the measurement of a limited number of metabolites at once. The researchers recognized that by using DNA barcodes as tags for metabolites, they could measure hundreds or even thousands of metabolites simultaneously. With the smol-seq platform now operational, the next phase is to develop aptamers for metabolites with potential biomedical significance. Over time, the expanding aptamer database will support machine learning approaches for predicting new aptamer designs capable of binding novel metabolite targets. In addition to enhancing the aptamer database, the research team will refine the platform to improve the precision of aptamer binding. This will be achieved by fine-tuning aptamer development at the nucleic acid level, ensuring the specificity required as the platform’s capacity to study an increasing number of metabolites grows.

“DNA sequencing is millions of times faster than it was 20 years ago, and we wanted to harness that power for metabolite detection,” said Andrew Fraser, principal investigator on the study and professor of molecular genetics at U of T’s Temerty Faculty of Medicine. “Smol-seq could transform diagnostics and biotechnology by making metabolite detection as easy and rapid as DNA sequencing.”


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.