Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Advanced Imaging Technique Helps See Low-Density Lipoprotein-Cholesterol in New Light

By LabMedica International staff writers
Posted on 01 Jan 2025

Low-density lipoprotein cholesterol (LDL-C), often referred to as "bad cholesterol," is a major contributor to cardiovascular disease, the leading cause of death worldwide, claiming one life every 33 seconds. More...

Until recently, scientists have been unable to observe the structure of LDL, particularly how it interacts with its receptor, LDLR, a protein essential for the process. Normally, when LDL binds to LDLR, it triggers the process that clears LDL from the bloodstream. However, genetic mutations can hinder this process, allowing LDL to accumulate in the blood, form plaque, and deposit in arteries, leading to atherosclerosis, a precursor to heart disease. In a groundbreaking study, researchers have used advanced technology to gain insight into this crucial interaction and visualize LDL in a completely new way.

By employing cryo-electron microscopy, a cutting-edge imaging technique, scientists at the National Institutes of Health (NIH, Bethesda, MD, USA) successfully observed the entire structural protein of LDL when it bound to LDLR. They then used artificial intelligence-powered protein prediction software to model the structure and pinpoint genetic mutations that cause elevated LDL levels. The creators of this software, who were not involved in the study, were recently awarded the 2024 Nobel Prize in Chemistry. The researchers discovered that many of the mutations linked to increased LDL were located in the region where LDL binds to LDLR, a key finding in understanding familial hypercholesterolemia (FH), an inherited condition that impairs the body's ability to process LDL. Individuals with FH have significantly elevated LDL levels and may suffer heart attacks at a young age.

The study revealed that the mutations associated with FH tended to cluster in specific areas on LDL. These findings, published in Nature, could pave the way for developing therapies designed to address the dysfunctional interactions caused by these genetic mutations. Moreover, the researchers believe their work could also benefit individuals without genetic mutations but who suffer from high cholesterol and are being treated with statins, which reduce LDL levels by enhancing LDLR function in cells. By understanding the precise points where LDLR binds to LDL, the researchers suggest they may now be able to target these binding sites to design new drugs that effectively lower LDL levels in the bloodstream.

“LDL is enormous and varies in size, making it very complex,” explained Joseph Marcotrigiano, Ph.D., chief of the Structural Virology Section in the Laboratory of Infectious Diseases at NIH’s National Institute of Allergy and Infectious Diseases and co-senior author on the study. “No one's ever gotten to the resolution we have. We could see so much detail and start to tease apart how it works in the body.”


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.