We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Analysis of Immune Cells Predicts Breast Cancer Prognosis

By LabMedica International staff writers
Posted on 20 Nov 2024

Tumor-infiltrating lymphocytes (TILs) are immune cells crucial in combating cancer. More...

Their presence in a tumor indicates that the immune system is attempting to attack and eliminate cancer cells. TILs can be important indicators in predicting how patients with triple-negative breast cancer will respond to treatment and how the disease might progress. However, assessing these immune cells can yield inconsistent results. Artificial intelligence (AI) has the potential to standardize and automate this process, but proving its effectiveness for healthcare use has been challenging. Now, researchers have explored how different AI models can predict the prognosis of triple-negative breast cancer by analyzing specific immune cells within the tumor. This study, published in eClinicalMedicine, represents a significant step toward incorporating AI into cancer care to enhance patient outcomes.

Researchers at Karolinska Institutet (Stockholm, Sweden) tested ten different AI models to evaluate their ability to analyze tumor-infiltrating lymphocytes in tissue samples from patients with triple-negative breast cancer. The results revealed that the performance of the AI models varied, but eight out of the ten models demonstrated strong prognostic capability, meaning they could predict patient health outcomes with similar accuracy. Even models trained on smaller datasets showed promising results, suggesting that tumor-infiltrating lymphocytes are a reliable biomarker. The study highlights the need for large datasets to compare different AI models and validate their effectiveness before they can be used in clinical practice. Although the findings are promising, further validation is required.

“Our research highlights the importance of independent studies that mimic real clinical practice,” said Balazs Acs, researcher at the Department of Oncology-Pathology, Karolinska Institutet. “Only through such testing can we ensure that AI tools are reliable and effective for clinical use.”


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.