Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Microscope Offers Unprecedented Deep and Wide-Field Visualization of Brain Activity at Single-Cell Resolution

By LabMedica International staff writers
Posted on 18 Nov 2024

Conventional multiphoton microscopy, which is fundamental for deep-tissue imaging, faces significant challenges related to imaging depth and field of view, particularly in highly scattering biological tissues such as the brain. More...

To enhance imaging depth while preventing thermal damage, the field of view often diminishes exponentially, complicating the observation of extensive neuronal networks. Now, a groundbreaking microscope has been developed to overcome these limitations by incorporating a range of innovative techniques, enabling researchers to visualize vast areas of the brain at unmatched depths.

A research team at Cornell University (Ithaca, NY, USA) has introduced an advanced imaging technology that offers exceptional deep and wide-field visualization of brain activity at single-cell resolution. This microscope, known as DEEPscope, merges two-photon and three-photon microscopy techniques to capture expansive neural activity and structural details that were previously difficult to access. A key aspect of this advancement is DEEPscope’s adaptive excitation system along with its multi-focus polygon scanning scheme, which facilitates efficient fluorescence generation for large field-of-view imaging. These features enable high-resolution imaging over a 3.23 x 3.23-mm² area with sufficient speed to record neuronal activity in the deepest layers of mouse cortical tissue. Additionally, the capacity for simultaneous two-photon and three-photon imaging increases the system's versatility, enabling detailed investigations of both superficial and deeper brain regions.

In a study published in the journal eLight, the researchers demonstrated DEEPscope’s ability to image entire cortical columns and subcortical structures with single-cell resolution. They successfully recorded neuronal activity in deep brain regions of transgenic mice, observing more than 4,500 neurons across both shallow and deep cortical layers. Furthermore, DEEPscope facilitated whole-brain imaging in adult zebrafish, capturing structural details at depths exceeding 1 mm and across a field greater than 3 mm—an achievement unprecedented in neuroscience. The techniques demonstrated can be seamlessly integrated into existing multiphoton microscopes, making them accessible for broad applications in neuroscience and other disciplines that require deep-tissue imaging. By addressing previous constraints, DEEPscope establishes a new benchmark for large-field, high-resolution, deep imaging of living tissues, with the potential to enhance understanding of the brain’s complex networks and their significance in health and disease.

“DEEPscope represents a significant advancement in brain imaging technology,” said Aaron Mok, the study's lead author. “For the first time, we can visualize complex neural circuits in living animals at such a large scale and depth, providing insights into brain function and potentially opening new avenues for neurological research.”


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.