Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Molecular Sensor Enables Fluorescence Imaging for Assessing Sarcoma Severity

By LabMedica International staff writers
Posted on 13 Sep 2024

Sarcoma is a diverse group of cancers that originates in soft tissues. More...

Due to their heterogeneous nature, quantitatively assessing the severity and metastasis of sarcomas in clinical pathology has been challenging, complicating diagnosis and prognosis monitoring. Moreover, conventional cancer stem cell (CSC) markers often exhibit overexpression in heterogeneous malignancies, making it difficult to identify and isolate CSCs within tumor cells. Researchers have now discovered a new candidate marker for determining the severity and metastasis of sarcoma and have developed a molecular sensor that enables fluorescence imaging targeting this marker.

A research team at Korea University College of Medicine (Seoul, South Korea) found a correlation between the expression of the conventional CSC marker CD44 and the prostaglandin synthesis network. They observed that Cyclooxygenase (COX) expression showed statistical specificity across different sarcomas. Building on these findings, the researchers designed two fluorescent probes, BD-IMC-1 and BD-IMC-2, which target COX enzymes and activate fluorescence upon disaggregation. This innovative approach allows for the visualization of CSCs within sarcoma tissues. Specifically, they linked BODIPY fluorescent molecules to the COX inhibitor indomethacin, creating molecules that induce self-aggregation of nanostructures and remain in a quenched fluorescent state in aqueous solutions. These molecules exhibit sensitive fluorescence only when bound to COX enzymes, functioning as chemosensors.

By employing COX inhibitors and fluorescent structures to disaggregate fluorescent molecules, they developed an imaging sensor that activates fluorescence. In the process, they also identified new candidate markers, indicating the need for further systematic research on the correlation between COX expression and CSC expression within sarcoma tissues. Previously, imaging molecules targeting COX enzymes induced changes in fluorescence characteristics at the single-molecule level to visualize COX enzymes. However, this study is the first to report imaging target proteins in fixed clinical samples based on the fluorescence characteristics resulting from structural changes in fluorescent multicomplexes. The research findings were published as the cover article in the international scientific journal Angewandte Chemie.

"The newly developed fluorescent molecular sensor does not rely on changes in fluorescence characteristics at the single-molecule level but utilizes the self-aggregated state and characteristics of multiple molecules, making it effective in complex samples such as biological tissues," said Professor Jun-Seok Lee from the Department of Pharmacology. "This research represents a new strategy for developing imaging sensors for various biological targets, contributing to the development of imaging-based diagnostic and prognostic monitoring techniques for sarcoma."

Related Links:
Korea University College of Medicine 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.