We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Light-Based Technique With 90% Accuracy Rate to Revolutionize Cancer Diagnosis

By LabMedica International staff writers
Posted on 03 Sep 2024

A quicker, cheaper, and less painful cancer detection technique developed using light has the potential to revolutionize cancer diagnosis, early detection, and monitoring. More...

Researchers at Aston Institute of Photonic Technologies (AiPT, Birmingham, UK) have developed a new technique for analyzing crystals in dehydrated blood. Utilizing a novel polarization-based image reconstruction method, the team examined polycrystalline structures within dried blood samples. This analysis is vital as proteins in the blood undergo structural transformations in their tertiary (unique 3D shape) and quaternary forms (how multiple proteins assemble) during the onset of diseases such as cancer.

The new technique allows for a comprehensive layer-by-layer analysis of dry blood smears, a critical factor in distinguishing between healthy and cancerous samples. The research involved 108 blood film samples divided into three equal groups: healthy individuals, prostate cancer patients, and patients with aggressive cancer cells. The findings published in the Nature journal Scientific Reports showed a 90% accuracy rate in early diagnosis and classification of cancer, surpassing the efficacy of traditional screening methods. Moreover, this approach uses blood samples rather than tissue biopsies, making it a less invasive and safer option for patients.

"Our study introduces a pioneering technique to the liquid biopsy domain, aligning with the ongoing quest for non-invasive, reliable and efficient diagnostic methods,” said AiPT Professor Igor Meglinski. “A key advancement in our study is the characterization of the mean, variance, skewness, and kurtosis of distributions with the cells which is crucial for identifying significant differences between healthy and cancerous samples. This breakthrough opens new avenues for cancer diagnosis and monitoring, representing a substantial leap forward in personalized medicine and oncology."

Related Links:
AiPT


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.