Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




AI Automates Analysis of Pathology Slides for Distinguishing Rheumatoid Arthritis Subtypes

By LabMedica International staff writers
Posted on 30 Aug 2024

Rheumatoid arthritis (RA) is a complex immune-mediated inflammatory disorder characterized by inflammatory-erosive arthritis. More...

Recent advancements in understanding the histopathological diversity of RA synovial tissue have identified three distinct phenotypes based on cellular composition, highlighting the need for targeted therapeutic approaches. Currently, pathologists manually categorize arthritis subtypes by analyzing cell and tissue characteristics in human biopsy samples, a process that is both time-consuming and costly, potentially leading to inconsistencies in diagnosis. To address these challenges, a new machine-learning tool has been developed to enhance the accuracy and efficiency of RA phenotyping in both pre-clinical and clinical settings.

In their study published August 29 in Nature Communications, investigators at Weill Cornell Medicine (New York, NY, USA) and Hospital for Special Surgery (HSS, New York, NY, USA) demonstrated the capability of artificial intelligence (AI) and machine learning technologies to effectively subtype pathology samples from RA patients. This differentiation among the RA subtypes can guide clinicians in selecting the most appropriate therapy for individual patients. Initially, the team trained the algorithm using samples from a specific mouse model, optimizing its ability to identify and categorize tissue and cell types into subtypes. This algorithm was then validated with another set of samples, revealing its potential to track treatment impacts, such as reduced cartilage degradation after six weeks of standard RA treatments.

Subsequently, the tool was applied to human biopsy samples, where it proved to be both effective and efficient in classifying clinical samples. The researchers are continuing to validate this tool with additional patient samples and exploring optimal ways to integrate it into existing pathological workflows. This technology not only promises to streamline the subtyping process, thereby reducing research costs and enhancing the efficacy of clinical trials, but also offers novel insights into RA by identifying tissue changes that might be overlooked by human observers. Ongoing development efforts by the researchers aim to create similar diagnostic tools for other conditions like osteoarthritis, disc degeneration, and tendinopathy, and extend machine learning applications to identify subtypes of other diseases, such as Parkinson’s disease, based on broader biomedical data sets.

“Our tool automates the analysis of pathology slides, which may one day lead to more precise and efficient disease diagnosis and personalized treatment for RA,” said Dr. Fei Wang, a professor of population health sciences and the founding director of the Institute of AI for Digital Health (AIDH) in the Department of Population Health Sciences at Weill Cornell Medicine. “It shows that machine learning can potentially transform pathological assessment of many diseases.”

"By integrating pathology slides with clinical information, this tool demonstrates AI's growing impact in advancing personalized medicine," added Dr. Rainu Kaushal, senior associate dean for clinical research and chair of the Department of Population Health Sciences at Weill Cornell Medicine. "This research is particularly exciting as it opens new pathways for detection and treatment, making significant strides in how we understand and care for people with rheumatoid arthritis."

Related Links:
Weill Cornell Medicine
HSS


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.