We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




3D Pathology with AI to Enhance Prognosis Accuracy for Barrett's Esophagus Patients

By LabMedica International staff writers
Posted on 08 Aug 2024

Barrett's esophagus is a condition where the lining of the esophagus changes due to chronic gastroesophageal reflux. More...

Individuals with Barrett's esophagus are at a slightly increased risk of developing esophageal cancer and require regular surveillance endoscopies. During these procedures, gastroenterologists collect numerous biopsies from the affected tissues. These samples are then cut into thin sections and placed on glass slides for examination under a microscope by pathologists. However, the tissue sections that pathologists view represent only about 1% or less of the actual biopsies and provide just a two-dimensional view, which can be misleading. Researchers are now conducting clinical studies of archived tissues from patients with the condition to develop computational 3D pathology methods for Barrett’s esophagus risk stratification.

The research team at UW College of Engineering (Seattle, WA, USA) had previously invented 3D pathology methods to assess prostate cancer risk and shifted their focus on gastrointestinal applications of their technologies, including for evaluating esophageal cancer risk in patients with Barrett’s esophagus. They aim to demonstrate that analyzing 3D pathology datasets from entire endoscopic biopsies using AI can better determine which patients might progress to esophageal cancer and thus require more intensive treatment. The team is utilizing open-top light-sheet microscopy for this purpose. This innovative technique allows for 3D microscopic viewing of biopsies without the need for slicing, preserving the entire tissue structure.

This "slide-free" microscopy technique involves using a light sheet and high-speed cameras to image tissue samples stained with fluorescent dyes and made transparent through a process called optical clearing. Once the 3D pathology datasets are prepared, AI is employed to either highlight the most crucial areas of the biopsy for pathologist review or to autonomously evaluate the tissues. In previous research published in Modern Pathology, the team introduced a deep learning approach that proved more efficient at identifying malignancies in Barrett’s esophagus biopsies than traditional methods, significantly reducing the number of images pathologists need to examine. Furthermore, the team is enhancing the AI model's training process by developing an advanced weakly-supervised deep learning triage system for analyzing 3D pathology datasets.

“We are trying to identify the highest risk patients so that they may receive early treatments that could be critical for their survival,” said Professor Jonathan Liu, professor of mechanical engineering, bioengineering, and laboratory medicine & pathology at the University of Washington. “In our archived tissue samples, some patients progressed to cancer, and we are trying to detect what in their tissues could have predicted that at the earliest stages.”

Related Links:
UW College of Engineering


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.