Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Magnetic Microneedle Array Robots to Revolutionize Tissue Slicing and Cultivation

By LabMedica International staff writers
Posted on 01 Aug 2024

The cultivation of patient-derived tissues in vitro is essential for accurate diagnosis, targeted treatments, and advancements in tissue engineering. More...

However, traditional methods of tissue slicing and cultivation often do not meet the clinical needs. Addressing this gap, a groundbreaking method has been developed that incorporates a controllable histotomy technique using hierarchical magnetic microneedle array robots. This innovation not only enhances tissue analysis capabilities but also paves the way for personalized medicine and the development of more effective therapies. As this technology evolves, it is anticipated to significantly impact biomedical research and clinical practices.

A team from Nanjing Drum Tower Hospital (Nanjing, China) has pioneered this innovative tissue slicing and cultivation method that promises to transform how primary tissues are managed in medical settings. Described in a research article published in Engineering, the method employs a three-dimensional printed slicing device with a mortise-tenon structure and a pagoda-shaped microneedle array scaffold loaded with magnetic particles. The multilayered structure of the microneedles ensures stable fixation of tissue samples during slicing, preventing slippage. Additionally, the encapsulated magnetic microneedle fragments convert tissue sections into biohybrid microrobots that can be magnetically manipulated for separation, transport, and dynamic culture.

This method was tested with primary pancreatic cancer tissues, which were segmented into small sections and cultured in multilayered microfluidic chips for comprehensive drug screening. The outcomes are promising for clinical application, marking a substantial advancement in the field of precision medicine. The research article also outlines potential enhancements, such as automating the tissue sectioning process and increasing the throughput of the microtomy device. Going forward, the researchers see potential applications of this technology extending beyond cancer to include various types of patient-derived tissues, potentially revolutionizing long-term tissue cultivation and monitoring.

“The development of this controllable histotomy technique marks a significant advancement in the field of tissue engineering and drug screening,” said Jiaming Wu, the editor of Engineering. “By leveraging the capabilities of magnetic microneedle array robots, researchers have been able to create a more efficient and precise method for tissue manipulation and analysis.”

Related Links:
Nanjing Drum Tower Hospital


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.