Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New WHO Reporting System for Lung Cytopathology to Enhance Diagnostic Accuracy

By LabMedica International staff writers
Posted on 13 Jun 2024

Lung cancer continues to be the most common cause of cancer-related deaths worldwide and ranks as the second most frequently diagnosed cancer in both men and women. More...

The role of lung cytopathology, which involves examining specimens such as sputum, bronchial brushings (BB), bronchial washings (BW), bronchoalveolar lavage (BAL), and fine needle aspiration biopsy (FNAB), is crucial for early and accurate diagnosis, thus enhancing treatment efficacy. The introduction of endobronchial ultrasound (EBUS) has significantly improved the diagnostic capabilities of FNAB by facilitating simultaneous diagnosis and staging. With the increasing significance of accurate lung tumor classification for molecular testing, there is a crucial need for the implementation of standardized terminology and reporting standards in lung cytopathology.

The World Health Organization (WHO, Geneva, Switzerland) has introduced a new reporting system designed to standardize this communication to enhance diagnostic accuracy, facilitate research, and encourage clinical trial participation. This system, the WHO Reporting System for Lung Cytopathology, developed in collaboration with the International Academy of Cytology (IAC, Freiburg im Breisgau, Germany) and the International Agency for Research on Cancer (IARC, Lyon, France), is the first of its kind aimed at standardizing the reporting of lung cytopathology specimens globally. It categorizes findings into five diagnostic categories—Insufficient/Inadequate/Non-diagnostic, Benign/Negative for Malignancy, Atypical, Suspicious for Malignancy, and Malignant. Each category is defined by specific cytomorphologic criteria, includes an estimated risk of malignancy (ROM), and offers guidelines for clinical management.

The WHO system provides specific clinical management recommendations for each diagnostic category. For instance, a diagnosis of "Malignant" often triggers further diagnostic actions such as bronchoscopy or imaging, possibly followed by EBUS- or CT-guided FNAB. Treatment may vary from surgical resection to systemic treatment, depending on the tumor's characteristics and condition of the patient. For benign results, ongoing monitoring and follow-up are generally recommended, while atypical or suspicious results may require additional testing to refine the diagnosis. The system also highlights the importance of ancillary tests like molecular and genetic testing, crucial for precise diagnoses and personalized treatment plans. These ancillary tests, including immunohistochemistry (IHC) and molecular assays, are critical for confirming diagnoses and are pivotal for identifying targeted therapies, particularly for lung adenocarcinoma and other specific cancer subtypes.

The WHO Reporting System for Lung Cytopathology is a pivotal step in achieving standardized, accurate, and effective lung cancer diagnostics. By providing distinct categories and criteria, it not only improves diagnostic consistency and patient management but also promotes ongoing research. The inclusion of ancillary testing and consideration for resource variability across different settings ensures that the system is applicable worldwide. Additionally, this standardization aids in gathering robust data for epidemiological studies and clinical trials, crucial for progressing our understanding and treatment of lung cancer. As this system becomes more widely adopted, it is expected to markedly enhance outcomes for lung cancer patients and contribute significantly to the global fight against this prevalent disease. Further refinement and research will continue to improve its clinical value and impact, maintaining its relevance in the field of lung cancer diagnostics.

Related Links:
WHO
IAC
IARC


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.