Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Deep Learning Powered AI Algorithms Improve Skin Cancer Diagnostic Accuracy

By LabMedica International staff writers
Posted on 16 Apr 2024

Artificial intelligence (AI) algorithms are increasingly being utilized in various clinical settings, such as dermatology. More...

These algorithms are developed by training a computer with hundreds of thousands or millions of images of various skin conditions, each labeled with details like the diagnosis and patient outcomes. Through a process known as deep learning, the computer learns to identify patterns in the images that are indicative of specific skin diseases, including cancers. Once sufficiently trained, the algorithm can suggest potential diagnoses based on new images of a patient’s skin. However, these algorithms do not operate in isolation; they are used under the supervision of clinicians who evaluate the patient, make their own diagnostic assessments, and decide whether to follow the algorithm's recommendations.

Now, a new study led by researchers at Stanford Medicine (Stanford, CA, USA) has found that AI algorithms, which utilize deep learning, can enhance the accuracy of diagnosing skin cancers. This benefit extends to dermatologists, though the improvement is more pronounced for non-dermatologists. The study analyzed 12 research papers that documented over 67,000 evaluations of possible skin cancers by various medical practitioners, both with and without AI assistance. Findings indicated that healthcare practitioners without AI support accurately diagnosed approximately 75% of actual skin cancer cases and correctly identified about 81.5% of non-cancerous conditions that resembled cancer. The performance of healthcare practitioners improved when they used AI to assist with diagnoses. Their sensitivity increased to about 81.1% and their specificity to 86.1%.

Although these improvements might appear modest, they are crucial for correctly diagnosing patients who are either mistakenly told they do not have cancer when they do, or incorrectly informed they have cancer when they do not. The analysis further revealed that medical students, nurse practitioners, and primary care physicians gained the most from AI assistance, with average improvements of approximately 13 points in sensitivity and 11 points in specificity. While dermatologists and dermatology residents already showed higher overall accuracy, their diagnostic performance also saw gains in sensitivity and specificity with AI assistance. The researchers are now looking to further explore the potential and challenges of integrating AI tools into healthcare, particularly focusing on how physicians' and patients' perceptions and attitudes towards AI could affect its adoption.

“Previous studies have focused on how AI performs when compared with physicians,” said postdoctoral scholar Jiyeong Kim, PhD. “Our study compared physicians working without AI assistance with physicians using AI when diagnosing skin cancers.”

Related Links:
Stanford Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.