Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Coin-Sized Device Rapidly Isolates Blood Plasma for Quicker and More Precise Clinical Diagnoses

By LabMedica International staff writers
Posted on 22 Mar 2024

Identifying biomarkers for various cancers and diseases often relies on cell-free DNA, RNA, and extracellular vesicles. More...

Traditionally, separating blood plasma to detect these markers requires centrifugation, spinning blood to isolate cells from plasma. Yet, even after multiple centrifugation cycles, some cells and platelets remain in the blood plasma, potentially releasing unwanted biological materials that can affect diagnostic accuracy. Researchers have now developed a compact, coin-sized chip capable of extracting blood plasma directly from a sample within 30 minutes, resulting in a more convenient and user-friendly option than the currently laborious centrifugation method.

The chip named ExoArc, developed by scientists at Nanyang Technological University (NTU, Singapore), offers a one-step solution to achieve over 99.9% purity by efficiently removing blood cells and platelets. This advance promises quicker and more reliable clinical analysis of critical biomarkers. To demonstrate its utility, the team developed a portable prototype device (measuring 30cm x 20cm x 30cm) incorporating the ExoArc chip (3.5cm x 2.5cm x 0.3cm), featuring a user-friendly touch-screen for easy operation and internal mechanisms for sample processing and plasma collection.

In clinical validation trials, ExoArc demonstrated its diagnostic capabilities by accurately identifying non-small cell lung cancer through microRNA profiling in blood plasma, achieving 90% sensitivity. Additionally, the device proved effective in differentiating microRNA molecules in blood plasma between healthy individuals and those with type 2 diabetes mellitus, uncovering 293 distinct microRNA types from a single blood sample. The differences in microRNA profiles between diabetic patients and healthy controls highlight ExoArc's potential in biomarker identification and disease diagnosis, marking a significant step forward in non-invasive medical diagnostics.

“This technology can help clinicians better predict and manage complications of chronic metabolic conditions like diabetes, by providing more accurate, timely, and individualized information,” said Tan Tock Seng Senior Consultant and Associate Professor Rinkoo Dalan. “By detecting specific biomarkers accurately, we can tailor treatments to the unique needs of each patient, potentially improving outcomes and enhancing the quality of care.”

Related Links:
Nanyang Technological University


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.