We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Test Identifies Aggressive Ovarian Cancers Early

By LabMedica International staff writers
Posted on 07 Mar 2024

Ovarian high-grade serous carcinoma (HGSC) is the predominant form of ovarian cancer affecting women. More...

Serous tubal intraepithelial carcinomas (STICs), which are precancerous lesions on the fallopian tubes, are considered the main precursors of HGSC. Women undergoing salpingectomy, the surgical removal of fallopian tubes, often do so without a detailed examination of these precancerous lesions. The challenge lies in the molecular diversity of STICs and the difficulty in detecting aggressive forms early, owing to their small size. In response to this urgent diagnostic need, researchers have developed an algorithm to identify STICs before they can progress to cancer.

This pioneering algorithm, named “REAL-FAST” (RealSeqS-based algorithm for fallopian tube aneuploidy pattern in STIC), was developed by a team at Johns Hopkins Medicine (Baltimore, MD, USA). In a pilot study, REAL-FAST distinguished five unique types of precancerous lesions in fallopian tubes, with two identified as particularly aggressive and often linked to recurrent HGSC. This discovery marks the first molecular identification of distinct genetic characteristics in STICs. The team employed a method known as Repetitive Element Aneuploidy Sequencing System (RealSeqS) to sequence DNA from 150 samples, focusing on aneuploidy levels – the presence of abnormal numbers of DNA chromosomes – in STICs, HGSC, and normal samples. The study revealed that while normal samples showed minimal aneuploidy, STICs exhibited significant non-random genetic alterations. This included notable whole or partial deletions on chromosome 17, where the pivotal tumor suppressor genes TP53 and BRCA1 are located. This loss of chromosome 17 provides insight into the simultaneous inactivation of these genes, critical in HGSC development. The study noted a particular association between germline mutations in the BRCA1 gene (chromosome 17) and HGSC risk, unlike BRCA2 (chromosome 13).

Based on these insights, the team developed the REAL-FAST algorithm to categorize samples into distinct molecular clusters, irrespective of their structural traits. It identified an STIC subgroup with unique chromosomal changes linked to increased cell proliferation and abnormal growth. The algorithm's efficacy in detecting STICs and HGSCs proved remarkable, correctly identifying cancer presence 95.8% of the time and accurately ruling out its absence 97.1% of the time. This suggests that only certain STICs lead to HGSC, characterized by specific chromosomal abnormalities. Despite the need for further clinical validation to link molecular findings with patient outcomes, the researchers are optimistic that a deeper understanding of HGSC development will soon foster enhanced diagnostic tools and better patient prognoses, impacting the lives of thousands of women diagnosed with ovarian cancer annually.

“This is a high-risk setting — these patients need more immediate diagnostic approaches,” said Christopher Douville, Ph.D., assistant professor of oncology at the Johns Hopkins University School of Medicine. “This test is about identifying precursor lesions before they progress to cancer.”

Related Links:
Johns Hopkins Medicine


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.