Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Nanopore Sequencing Cuts Tumor Analysis Times and Costs, Finds Study

By LabMedica International staff writers
Posted on 11 Dec 2023

Copy number variations (CNVs), which activate oncogenes and inactivate tumor suppressor genes, play a crucial role in the development and progression of cancers. As such, CNV analysis is a vital component of tumor grading and diagnosis. Traditionally, this analysis relies on nucleotide hybridization and next-generation sequencing, methods confined to high-complexity centralized laboratories and requiring several days to complete. A more rapid, cost-effective, and straightforward approach to CNV analysis could significantly enhance clinical decision-making, refine surgical planning, and facilitate the identification of potential molecular therapies within the timeframe of surgical procedures. Researchers have now identified nanopore sequencing as a method to refine CNV analysis.

A study conducted by researchers at Dartmouth-Hitchcock Medical Center (DHMC, Lebanon, NH, USA) has found nanopore sequencing to be a more efficient means for CNV analysis. They used Oxford Nanopore’s MinION device, which offers real-time interpretation of long-read nucleotide sequences. To adapt this technology for CNV detection, the team employed a technique involving the random analysis of linked DNA fragments, which allows for the identification of multiple mappable DNA fragments within a single sequencing read.

The study involved analyzing 26 malignant brain tumors using this method. The nanopore sequencing approach successfully detected the same genomic alterations and amplifications as those identified through clinically validated next-generation sequencing and chromosomal microarray analyses. This method also concurrently facilitates tumor methylation classification without necessitating additional tissue preparation, as promoter hypomethylation was observed in all detected amplified oncogenes. A patent application for this novel approach, named irreversible Sticking Compatible Overhang to Reconstruct DNA (iSCORED), is currently pending. The researchers view this accelerated method of CNV analysis as a significant step forward in reducing the time required to identify patients who could benefit from treatment with molecular-targeted therapies.

“The low cost per sample, a mere USD 125, and the ease of setting up the infrastructure with a budget of USD 6,000-8,000 for MinION and USD 14,000-16,000 for PromethION make it an economical option for clinical applications,” stated the researchers. “The unmatched turnaround time of 120-140 minutes further positions our method as a robust and invaluable tool for widespread implementation in clinical settings.”

Related Links:
DHMC
Oxford Nanopore

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.