Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

By LabMedica International staff writers
Posted on 29 Nov 2023

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1.3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating bacterial colonies with antibiotics, a process that is notably time-consuming, often taking several days to gauge bacterial resistance to a spectrum of antibiotics. This delay poses a significant challenge in urgent medical situations, like sepsis, where prompt treatment is crucial. As a result, clinicians are often compelled to either rely on their clinical judgment to prescribe specific antibiotics or administer a broad-spectrum antibiotic regimen. However, the use of ineffective antibiotics can exacerbate infections and potentially lead to increased AMR in the community. Now, researchers have reported significant progress in developing a rapid antimicrobial susceptibility test that can deliver results in as little as 30 minutes, marking a huge improvement over current standard methods.

A team of researchers from the University of Oxford (Oxford, UK) has created a method combining fluorescence microscopy with artificial intelligence (AI) to detect AMR. This technique involves training deep-learning models to scrutinize images of bacterial cells and identify structural changes when exposed to antibiotics. The method proved successful with various antibiotics, demonstrating a minimum accuracy of 80% on a per-cell analysis. The team applied this method to various clinical strains of E. coli, each exhibiting different resistance levels to the antibiotic ciprofloxacin. Impressively, the deep-learning models consistently and accurately identified antibiotic resistance, achieving results at least tenfold faster than current leading clinical methods.

With further development, this rapid testing method has the potential to enable more precise antibiotic treatments, reducing treatment durations, lessening side effects, and helping to curb the growth of AMR. The research team envisions future adaptations of this model for detecting resistance in clinical samples to a broader range of antibiotics. Their goal is to enhance the speed and scalability of this method for clinical application, as well as to modify it for use with various types of bacteria and antibiotics.

“Antibiotics that stop the growth of bacterial cells also change how cells look under a microscope, and affect cellular structures such as the bacterial chromosome,” said Achillefs Kapanidis, Professor of Biological Physics and Director of the Oxford Martin Program on Antimicrobial Resistance Testing. “Our AI-based approach detects such changes reliably and rapidly. Equally, if a cell is resistant, the changes we selected are absent, and this forms the basis for detecting antibiotic resistance.”

Related Links:
University of Oxford

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.