We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Pathologic Scoring System Accurately Detects Remaining Lung Cancer after Presurgical Treatments

By LabMedica International staff writers
Posted on 10 Nov 2023

Immunotherapies, which activate a patient's immune system to target tumors, are increasingly being combined with traditional chemotherapies to shrink tumors before surgery, enhancing the likelihood of successfully eliminating cancer. More...

Oncologists typically depend on radiologic imaging to assess the remaining tumor after such treatments, but this method's accuracy can be limited, especially in early-stage cancers. Another promising approach is circulating tumor DNA (ctDNA) clearance, involving genetic sequencing to detect lung cancer-associated mutations in patient blood samples, but it is not yet widely accessible. To address this gap, researchers have now developed a new pathologic scoring system that accurately evaluates the amount of lung tumors left after presurgical cancer treatments, which can be vital in predicting patient survival.

This innovative research, led by investigators at the Johns Hopkins University (Baltimore, MD, USA), involved a new analysis of data from the CheckMate 816 study. The study had previously shown that administering immunotherapy (nivolumab) in combination with chemotherapy before surgery for non-small cell lung cancer improves event-free survival. The new pathologic assessment of residual viable tumor (RVT) in patients treated with these therapies offers a robust and efficient evaluation of the patient's response to treatment. This assessment could guide patient therapy choices and predict survival, supporting its use as an early clinical trial endpoint and a surrogate endpoint for survival in accelerated regulatory approvals.

During this study, the researchers employed a novel approach, immune-related pathologic response criteria (irPRC), to detect pathologic changes indicating that the tumor was present before immunotherapy but was destroyed by the treatment. This allowed them to measure the percentage of the tumor that was left, ranging from 0% to 100%. The ability to categorize patients into different groups based on the amount of tumor left has significant implications for future clinical trials and treatment decisions. For instance, patients with no remaining tumor may need less or no postsurgical immunotherapy, while those in the intermediate group might require extended therapy. Patients with a limited response might need to switch or add new therapies.

The next steps for the research team include identifying the most clinically meaningful RVT cutoffs. They also plan to use RVT to evaluate the effect of immunotherapy on lymph node tumors, which could enhance survival predictions. In the long term, there's potential for combining pathology, radiology, and ctDNA results for comprehensive monitoring of treatment efficacy. The pathologic scoring system has already demonstrated its applicability in assessing ten types of tumors, including lung, skin, and colorectal cancers. Its affordability and use of common pathologic tools could make it particularly beneficial in resource-limited settings.

“The common features seen across these multiple tumor types means that pathologists don’t have to switch to different scoring systems for assessing pathologic response. This is similar to what already exists in radiology, where the RECIST system is used across all tumor types for determining objective response to therapy,” said senior study author Janis Taube, M.D., M.Sc. “It is important that as these immunotherapies move into clinical trials and become standard of care, pathologists worldwide have a standard scoring system for the assessment of treatment response.”

Related Links:
Johns Hopkins University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Nasopharyngeal Applicator
CalgiSwab 5.5" Sterile Mini-tip Calcium Alginate Nasopharyngeal Swab w/Aluminum HDLE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.