Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Self-Supervised AI Improves Diagnostic Accuracy for Melanoma with Low Pathologist Agreement

By LabMedica International staff writers
Posted on 09 Nov 2022

Study results on new artificial intelligence (AI) that predicts diagnostic agreement for melanoma highlight the potential of the technology to improve diagnostic accuracy for this deadliest form of skin cancer and other diseases with low pathologist concordance. More...

Proscia’s (Philadelphia, PA, USA) retrospective study “Using Whole Slide Image Representations from Self-Supervised Contrastive Learning for Melanoma Concordance Regression” demonstrated the AI’s performance on 1,412 whole slide images of skin biopsies. Each image was assessed by three to five dermatopathologists to establish a concordance rate. The R2 correlation between the technology’s predictions and the dermatopathologists’ concordance rates was 0.51. Proscia’s research also indicates that the same AI could be extended to other diagnoses that demonstrate low pathologist agreement. This includes breast cancer staging as well as Gleason grading of prostate cancer, which is used to evaluate the aggressiveness of the disease. Both often play an important role in informing treatment decisions.

In addition to this study, Proscia plans to conduct additional research illustrating the potential benefits of AI in helping pathologists to diagnose melanoma, including:

  • Lowering the misdiagnosis rate for difficult cases. Melanoma often presents like benign mimickers, causing pathologists to disagree on its diagnosis 40% of the time. As cases are often evaluated by only one pathologist, AI that predicts concordance with multiple experts could help to improve diagnostic accuracy by serving as a second set of eyes.
  • Accelerating turnaround times for critical results. Over 15 million skin biopsies are taken annually in the U.S., each of which may display one of hundreds of diagnoses. AI that predicts diagnostic agreement could flag cases that were likely to be challenging, driving efficiency gains by suggesting additional testing to provide a more complete look prior to pathologist review.
  • Reducing costs and distress for patients. Frequent over-diagnosis of melanoma not only results in additional costs for health systems but also leads patients to pay for unnecessary treatment and cope with the stress of believing they have a life-threatening disease. Increased diagnostic accuracy could help to eliminate these burdens.

“With this study, we have laid the groundwork for a new use case of AI in pathology that could have a tremendous impact on patient outcomes,” said Sean Grullon, Proscia’s Lead AI Scientist and lead author of the study. “Our technology relies on self-supervised learning to recognize incredibly subtle patterns, demonstrating the power of one of the most advanced approaches in AI.”

Related Links:
Proscia 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.