We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Blood-Based MicroRNA Signatures Distinguishes Individuals with Lung Cancer

By LabMedica International staff writers
Posted on 16 Mar 2020
The overall low survival rate of patients with lung cancer calls for improved detection tools to enable better treatment options and improved patient outcomes. More...
Lung cancer affects about 228,000 people a year in the USA and has a five-year survival rate just shy of 20%.

Multivariable molecular signatures, such as blood-borne microRNA (miRNA) signatures, may have high rates of sensitivity and specificity but require additional studies with large cohorts and standardized measurements to confirm the generalizability of miRNA signatures. MicroRNA signatures appear to distinguish individuals with lung cancer from those with other lung diseases as well as from those without a lung condition.

A large team of scientists collaborating with Saarland University (Saarbrücken, Germany) investigated the use of blood-borne miRNAs as potential circulating markers for detecting lung cancer in an extended cohort of symptomatic patients and control participants. Clinical diagnoses were obtained for 3,046 patients (606 patients with non–small cell and small cell lung cancer, 593 patients with non-tumor lung diseases, 883 patients with diseases not affecting the lung, and 964 unaffected control participants). The team calculated the sensitivity and specificity of liquid biopsy using miRNA signatures for detection of lung cancer. Blood samples collected from the participants underwent genome-wide miRNA profiling using human miRNA microarrays.

The investigators split their cohort into equal-sized training and validation sets. Within the training set, they uncovered a 15-miRNA signature that could distinguish patients with lung cancer from all other individuals. In the validation set, this signature could diagnose lung cancer with an accuracy of 91.4%, a sensitivity of 82.8%, and a specificity of 93.5%. Similarly, they uncovered a 14-miRNA signature that could distinguish patients with lung cancer from those with a non-tumor lung disease with 92.5% accuracy, 96.4% sensitivity, and 88.6% specificity. A third signature of 14 miRNAs could distinguish patients with early-stage lung cancer from all other patients with an accuracy of 95.9%, a sensitivity of 76.3%, and a specificity of 97.5%. Although the team focused on general lung cancer biomarkers, they noted that the miRNA hsa-miR-30a-5p was best able to tell small cell lung cancer and non-small cell lung cancer apart.

The authors concluded that their study suggested that the identified patterns of miRNAs may be used as a component of a minimally invasive lung cancer test, complementing imaging, sputum cytology, and biopsy tests. The study was published on March 5, 2020 in the journal JAMA Oncology.

Related Links:
Saarland University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.