We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Luminex Corporation

Luminex develops, manufactures, and markets biological testing technologies with applications in clinical diagnostics... read more Featured Products: More products

Download Mobile App




New Blood Test Marks Progress in Battle Against Sepsis

By LabMedica International staff writers
Posted on 03 Dec 2019
Sepsis is a serious condition in which the immune system launches an overwhelming response to infection. More...
The cause of the infection can be any type of microbe, including fungi, bacteria, and viruses, but usually, it is bacteria.

The immune response releases inflammatory proteins into the bloodstream, causing blood clots to form and vessels to leak. This impedes blood flow and leads to organ damage. The progress of sepsis is often unpredictable and rapid. It is a significant cause of hospital deaths and readmission.

A team of scientists led by the Cincinnati Children’s Hospital Medical Center (Cincinnati, OH, USA) developed the Pediatric Sepsis Biomarker Risk Model (PERSEVERE) to estimate mortality risk and proposed its use as a prognostic enrichment tool in sepsis clinical trials; prognostic enrichment selects patients based on mortality risk independent of treatment. It assesses five markers in the blood to predict who is at low, medium, and high risk of death. With this knowledge, doctors could start treating the serious condition much earlier and with more precision.

In a prospective cohort of 461 children with widely differing risk levels who were receiving intensive care for sepsis, the blood panel reliably predicted who would develop severe sepsis and accurately distinguished between pediatric survivors and non-survivors of sepsis at 28 days. The cohort was enrolled from a number of pediatric care centers across the country. The overall mortality rate was 12.6%. PERSEVERE includes C-C chemokine ligand 3 (CCL3), interleukin 8 (IL8), heat shock protein 70 kDa 1B (HSPA1B), granzyme B (GZMB), and matrix metallopeptidase 8 (MMP8). Biomarker concentrations were measured in a Luminex 100/200 System (Luminex Corporation, Austin, TX, USA).

The investigators also found that blood bacterial loads were higher in children who were at greater risk of dying. That finding echoes the group's previous results in mice, which showed that a higher-dose antibiotic rather than a high-dose anti-inflammatory was able to control the infections. Together, the observations indicate that a greater bacterial burden rather than excessive inflammation is the main pathologic impetus of sepsis.

Hector R. Wong, MD, a director of critical care medicine and senior investigator of the study, said, “This approach is not about diagnosis, who does or doesn't have sepsis. It's about asking among those with sepsis who's at risk for poor outcome, and we were impressed how well the model performed.” The study was published on November 13, 2019 in the journal Science Translational Medicine.

Related Links:
Cincinnati Children’s Hospital Medical Center
Luminex Corporation



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.