We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Protein Linked to Aggressive Skin Cancer

By LabMedica International staff writers
Posted on 10 Jul 2019
Almost 300,000 people worldwide develop malignant melanoma each year. More...
The disease is the most serious form of skin cancer and the number of cases reported annually is increasing, making skin cancer one of Sweden's most common forms of cancer.

Over the past ten years, new treatment alternatives that use different methods to strengthen the immune system or attack specific cancer cells have been developed for patients with metastatic skin cancer. The introduction of these treatments is due to an increased understanding of how melanoma develops, but there is still a lack of knowledge about how the tumor cells spread to other parts of the body.

A team of scientists mainly from Lund University (Lund, Sweden) collected lymph node metastatic tissue from 124 patients (48 females, 73 males and three missing information) with a regional metastatic disease and average age at diagnosis of 61 (range 25-86) was used in the quantitative polymerase chain reaction (qPCR) analysis. The team used a multiplicity of methods to obtain their results.

The investigators uncovered an ATP-Dependent RNA Helicase (DDX3X)-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes, they identified the microphthalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5′ UTR. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy.

The team noted that that the DDX3X protein does not affect whether or not one develops malignant melanoma, but that it plays a considerable role in the aggressiveness of the tumor. The patient's level of DDX3X can therefore serve as a biomarker for predicting how intractable the disease will be. Göran B. Jönsson, MD, a professor of oncology and pathology, and a senior author of the study, said, “The activity of the MITF gene determines the melanoma cells' specific characteristics, which are then linked to the disease prognosis. The lower the level of DDX3X protein the patient has in the tumor cell, the more aggressive the disease and the worse the prognosis will be.” The study was published on June 18, 2019, in the journal Cell Reports.

Related Links:
Lund University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.