We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




EBV-DNA Measured in Nasopharyngeal Carcinoma Patients

By LabMedica International staff writers
Posted on 08 Apr 2019
Nasopharyngeal carcinoma (NPC) is one of the head and neck epithelial cancers and is a serious threat to human health. More...
According to the latest statistics, about 80% of patients with NPC were observed in Asia, especially in Southeast Asia and south China.

Epstein-Barr virus (EBV) causes several lymphomas and hence has been considered to cause NPC. Plasma EBV-DNA is regarded as a significant biomarker for NPC. Circulating cancer-derived EBV-DNA in plasma has been shown to be associated with the early screening of patients with NPC.

Scientists at Taizhou Central Hospital (Taizhou, China) included in a study 37 NPC patients treated with intensity-modulated radiotherapy (IMRT) and 40 healthy controls between July 2015 and June 2016. Peripheral blood samples (3 mL) were collected from patients with NPC before treatment (Pre) and after treatment (Post), and from healthy donors (HD). Anticoagulant samples were used for flow cytometry analysis. Plasma samples were centrifuged for 5 minutes at 800 rpm and tested by plasma EBV-DNA assay.

Fluorochrome-conjugated monoclonal antibodies (mAbs) were used and flow cytometry analysis was performed to determine the numbers of neutrophils, lymphocytes, CD4+, Treg , CD8+, and CD8+PD1+ and after processing the cells were analyzed immediately using a BD-FACS AriaII cytometer. Routine blood specimens were anti-coagulated with Ethylene Diamine Tetraacetic Acid. Sysmex XE-2100 and reagents were used to obtain the total numbers leukocytes and lymphocytes. The concentration of EBV-DNA was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR).

The team reported that the changes after IMRT were determined by comparing the numbers of neutrophils, lymphocytes, CD4+, Treg, CD8+, CD8+PD1+ cells, and the concentration of plasma EBV-DNA between pretreatment and post-treatment groups. IMRT could reduce the expression level of PD-1 and the number of Treg cells. The concentration of plasma EBV-DNA and the expression level of CD8+PD-1+ were closely associated with the occurrence and development of NPC. Thus, EBV-DNA can be used as an important marker for early diagnosis, and IMRT can strongly reduce the copies of EBV-DNA.

The authors concluded their study showed that IMRT could reverse T-cell exhaustion and reduce the copies of EBV-DNA. In clinical practice, plasma EBV-DNA is a sensitive biomarker for diagnosis, prognosis, and evaluation of clinical efficacy. The study was published on March 14, 2019, in the journal Diagnostic Pathology.

Related Links:
Taizhou Central Hospital


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.