We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Dormant Disseminated Tumor Cells Stratified in Breast Cancer Patients

By LabMedica International staff writers
Posted on 30 Oct 2018
Breast cancer patients may experience relapse and subsequent death from the disease many years after primary treatment. More...
This indicates an ability of occult cancer cells to survive in a non- or slow-proliferating state, retaining a potential for progression and proliferation at a later time point.

The presence of disseminated tumor cells (DTCs) in bone marrow (BM) is an independent prognostic factor in early breast cancer but does not uniformly predict outcome. Tumor cells can persist in a quiescent state over time, but clinical studies of markers predicting the awakening potential of DTCs are lacking.

Scientists at the University Hospital Oslo (Oslo, Norway) and their colleagues at the Tisch Cancer Institute (New York, NY, USA) analyzed the Nuclear Receptor Subfamily 2 Group F Member 1 (NR2F1) protein expression in DTCs by double immunofluorescence (DIF) staining of extra cytospins prepared from 114 BM samples from 86 selected DTC-positive breast cancer patients. NR2F1 is an orphan nuclear receptor of the retinoic acid receptor family.

Bone marrow was aspirated in heparin and separated by density centrifugation using Lymphoprep. Mononuclear cells (MNCs) were collected from the interphase layer, washed in 1% fetal calf serum in PBS and resuspended to 1 × 106 cells/mL. Cytospins were prepared by centrifugation of the BM MNCs down to poly-l-lysine-coated glass slides (5 × 105 MNCs/slide) in a cytocentrifuge, air-dried at room temperature overnight, and stored at −80 °C until immunostaining. Double immunofluorescence was performed using the broad-specter anticytokeratin (anti-CK) monoclonal antibodies AE1/AE3 combined with anti-COUP TF1/NR2F1 for expression of dormancy.

The team found that when cells from a breast cancer patient's original tumor metastasized into the patient's bone marrow with none, or only a small amount, of the protein NR2F1, the patients all soon died. However, patients who had a high concentration of NR2F1 in the cancer cells in their bone marrow did not frequently develop this type of metastatic cancer, and lived longer. The presence of a high concentration of NR2F1 induced dormancy in the cancer cells, essentially deactivating them, so this study shows that survival in these patients is due to the dormancy of the disseminated cancer.

Julio A. Aguirre-Ghiso, PhD, professor of Oncological Sciences and the lead author of the study, said, “This research shows that the survival advantage in these patients is due to high levels of this protein. Tests using this protein marker could further improve curative treatment of breast cancer, sparing patients from unnecessary treatments. Identifying patients with disseminated disease that is not yet symptomatic and characterizing it for potential dormancy or metastatic recurrence is a game changer.” The study was published on October 16, 2018, in the journal Breast Cancer Research.

Related Links:
University Hospital Oslo
Tisch Cancer Institute


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.