We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Target Protein for Colon Cancer Identified

By LabMedica International staff writers
Posted on 02 Aug 2018
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the third leading cause of cancer-related death in men and women in the USA. More...
Pathogenic mediators that regulate CRC tumorigenesis are desirable biomarkers to predict prognosis, recurrence of the disease, and response to therapy to improve the management of patients with CRC.

The treatment of CRC is becoming increasingly personalized, guided by a combination of an individual's clinical, tumor, and molecular features. The proto-oncogene β-catenin drives colorectal cancer (CRC) tumorigenesis. Casitas B-lineage lymphoma (c-Cbl) inhibits CRC tumor growth through targeting nuclear β-catenin by a poorly understood mechanism. In addition, the role of c-Cbl in human CRC remains largely underexplored.

Scientists at Boston University School of Medicine (Boston, MA, USA) evaluated in a retrospective, single-center, observational cohort study of 72 patients with stage IV CRC who had available tumor tissue samples for analysis and were treated from January 1, 2004, to December 31, 2014. The team obtained unstained, 6-μm, paraffin-embedded sections that had been processed and examined. A customized, color-based image segmentation pipeline was developed to estimate the amounts of c-Cbl expression in human CRC samples.

The scientists used in their study Western blotting, cell culture, antibodies, in vitro angiogenesis assay, ubiquitination assay, vascular endothelial growth factor (VEGF) enzyme-linked immunosorbent assay, and spheroid formation assay. The RNeasy minikit was used to extract total RNA from HT-29 cells that expressed various constructs. The investigators used the Qiagen Sensiscript reverse transcription kit followed by RT-PCR using prevalidated human AXIN2, MYC, and VEGF primers and SYBRgreen.

The team used the a novel quantitative histopathologic technique, to demonstrate that patients with high c-Cbl–expressing tumors had significantly better median survival (3.7 years) compared with low c-Cbl–expressing tumors (1.8 years) and were more than twice as likely to be alive at three years compared with low c-Cbl tumors. They also demonstrated that c-Cbl regulation of nuclear β-catenin requires phosphorylation of c-Cbl Tyr371 because its mutation compromises its ability to target β-catenin. The tyrosine 371 (Y371H) mutant interacted with but failed to ubiquitinate nuclear β-catenin. The nuclear localization of the c-Cbl–Y371H mutant contributed to its dominant negative effect on nuclear β-catenin.

The authors concluded that an association of tumor levels of c-Cbl and overall survival of patients with metastatic CRC strengthens the role of c-Cbl as a negative regulator of CRC tumor growth. These findings demonstrate Wnt/β-catenin signaling as a potential downstream mediator of the effects of CBL mutation at c.1111T>C (p.371Y>H) and validate the molecular features of c-Cbl, which are critical to its effect on nuclear β-catenin. The study was published on July 17, 2018, in the American Journal of Pathology.

Related Links:
Boston University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.