We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Image Analysis System Quantifies NASH Disease Activity

By LabMedica International staff writers
Posted on 25 Apr 2018
Non-alcoholic steatohepatitis (NASH) is the progressive form of non-alcoholic fatty liver disease (NAFLD), in which excessive fat accumulates in the liver of individuals who do not have a history of alcohol abuse.

NAFLD is regarded as a hepatic manifestation of metabolic syndrome, with the number of individuals with NAFLD/NASH increasing rapidly worldwide, in parallel with the increasing prevalence of obesity. More...
Although clinical algorithms based on blood test results are being developed to identify patients with progressive NASH, liver biopsy remains essential to establish both the diagnosis of NASH and the severity of the disease.

In a study, a murine model fed a choline-deficient, L-amino-acid-defined diet supplemented with cholesterol was used to evaluate hepatocellular ballooning and lobular inflammation in liver biopsy samples. An expert histopathologist determined the ballooning and inflammation scores for all the animals included in the study, and deep-learning models were constructed to detect and analyze these histological features. An initial training set of 31 was used to calibrate ballooning and inflammation for subsequent prediction of these histological features in four independent cohorts (n=271).

The study found that deep-learning algorithms applied using open-source pathology software QuPath1 (GENFIT, Loos, France), could accurately identify cell histology patterns consistent with lobular inflammation and hepatocellular ballooning - markers of disease activity that are essential to establish the diagnosis and severity of NASH. The deep-learning system was able to predict cell histological patterns relating to ballooning and inflammation with accuracies of 98% and 91%, respectively. Excellent agreement was observed between the expert and fully automated scores of ballooning at a cellular level for each of the cohorts. An excellent correlation was also observed with the full tissue samples, and between whole slide imaging-based automatic scoring of inflammation on the training cohort.

John Brozek, Chief Data and Information Officer at GENFIT, said, “Deep-learning-based scoring systems allow an exhaustive and reproducible analysis of all cells in a biopsy sample, and they can analyze specific regions of cells that can be difficult to interpret manually, even if you are an expert'. Automated scoring system for ballooning and inflammation showed a high correlation with expert evaluation and it is ready to be used for high-throughput activity scoring in pre-clinical studies or, in the near future, as a companion diagnostic tool for clinical application.” The study was presented at The International Liver Congress held April 11-15, 2018, in Paris, France.

Related Links:
GENFIT


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.