We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cancer Stem Cells Isolated Using Novel Method

By LabMedica International staff writers
Posted on 07 Mar 2018
Stem cells are in various tissues in the body, and unlike regular cells, which have a limited lifespan; they can divide and renew themselves for long periods of time. More...
They are also unspecialized, meaning that when one of them divides, the resulting cells can transform into another cell type.

Similarly, cancer stem cells (CSCs), believed to reside at the heart of tumors, fueling their growth, are also thought to be unspecialized and able to self-renew until they transform into new cancer cells. Most effective treatments for primary tumors leave cancer stem cells unscathed. Even if a primary tumor is successfully treated, secondary tumors can appear years later and are often more aggressive and harder to treat.

Scientists at the University of Texas at Dallas (Richardson, TX, USA) have devised a new technique to isolate aggressive cells thought to form the root of many hard-to-treat metastasized cancers, a significant step toward developing new drugs that might target these cells. The team used a two-step process to sort through a library of 40,000 chemical compounds, looking for any that would selectively bind to breast cancer stem cells, isolating them from standard breast cancer cells.

The screening process identified five compounds, called ligands that bind specifically to cancer stem cells and the investigators selected one of them for closer study. They incubated a mixture of both breast cancer stem cells and non-stem cancer cells together with 40,000 tiny plastic beads, each coated with multiple copies of this one ligand. The synthetic ligand (1) that specifically binds to CSCs over non-CSCs of breast cancer cells was identified for the first time via a cell-binding screening of a chemical library. The ligand 1 showed specific binding to CD24−/CD44+/ALDH+ CSC population of MCF-7 and MDA-MB-231.

The team demonstrated that 1-immobilized beads can be used as matrices for affinity isolation of 1-binding CSC population from breast cancer cells. The 1-binding population showed significantly increased expressions of stemness-associated transcription factors. Importantly, the 1-binding population demonstrated accelerated tumor growth in vivo, and the resulting tumor displayed an increased migratory activity and high expressions of CSC markers.

Jiyong Lee, PhD, an assistant professor and lead investigator, said, “We have approached this problem in a novel way, and for the first time have isolated a ligand that binds specifically to cancer stem cells.” The study was published on February 26, 2018, in the journal Chemistry - A European Journal.


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.