We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Five New Genes Identified for ALS

By LabMedica International staff writers
Posted on 13 Dec 2017
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is characterized by loss of motor neurons in the brain, brainstem and spinal cord, with concurrent muscle atrophy and is typically fatal within 2–5 years from diagnosis.

More than 30 genes have been linked to ALS, and mutations in the 11 genes that encode RNA binding proteins cause familial forms of ALS. More...
These RNA binding proteins play a critical role in how genes encoded within the DNA in every cell are converted to the proteins that perform all the functions within a cell.

A team of scientists from the Barrow Neurological Institute (Phoenix, AZ, USA) obtained ALS and non-neurologic disease control post-mortem tissue samples. Paraffin-embedded post-mortem tissue sections from spinal cords and cerebellum were used for immunohistochemistry. Sections were visualized using a Leica AperioScope microscope (Leica Biosystems Inc, Buffalo Grove, IL, USA), and analyzed using the Aperio eSlide manager image analysis. Laser-capture microscopy, RNA extraction and real-time polymerase chain reaction (PCR) analysis was also performed.

The team validated the top 10 RNA binding proteins using five different methods that included use of patient tissue samples and patient derived stem cells differentiated into motor neurons. They also examined a smaller set of RNA binding proteins near the bottom of the list to demonstrate that any changes detected in the top 10 were not observed for those at the bottom of the list, demonstrating the ability of Watson for Drug Discovery to correctly predict RNA binding proteins linked to ALS. Eight of the top 10 candidates were successfully validated and shown to be altered in ALS. Five of these genes had never been examined in ALS, indicating that IBM's artificial intelligence platform could predict novel genes and proteins linked to this disease. RNA binding proteins at the bottom of the list were not altered in ALS.

Robert Bowser, PhD, a professor of neuroscience and senior investigator of the study, said, “Further validating and expanding on our earlier findings has been exciting, because in studies of this nature, time is of the essence. We could have individually looked at the 1,500 proteins and genes but it would have taken us much longer to do so. These findings inspire hope that, with this technology, we may someday identify new and more effective treatments for ALS.” The study was published on November 17, 2017, in the journal Acta Neuropathologica.


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Nasopharyngeal Applicator
CalgiSwab 5.5" Sterile Mini-tip Calcium Alginate Nasopharyngeal Swab w/Aluminum HDLE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.