We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Single-Cell Diagnostics Advocated for Breast Cancer Subtyping

By LabMedica International staff writers
Posted on 06 Nov 2017
In an opinion article based their analysis of studies, two medical researchers argue that women diagnosed with breast cancer (BC) would likely benefit from treatment based also on identifying the molecular subtype of different cells within their tumors, in addition to current molecular and histopathology testing of collections of tumor cells.

They discuss the growing consensus that a tumor can have cells of multiple origins and respond variably to treatment. More...
The authors advocate for development of more accurate diagnostics to capture molecular irregularities between cells within a tumor.

"Breast tumors are moving targets because they are really versatile," said Jun-Lin Guan, professor at University of Cincinnati College of Medicine (Cincinnati, OH; USA), who co-authored the paper with postdoctoral fellow Syn Kok Yeo, "If you use a treatment that's targeting one subtype, which kills one type of breast cancer, often the other kind will actually expand. That defeats the purpose of treatment."

BC cells differ by the types of molecular markers (genetic or biochemical, some of which are found on their surface) that physicians can have tested to understand the characteristics of a patient's cancer to help devise an optimal treatment strategy. For example, women with the HER2+ BC subtype generally have a poorer prognosis than those with the luminal A tumors because of how quickly the cells multiply. Often tumor samples are taken and screened for the most common markers present, but Prof. Guan and Dr. Yeo's analysis of human and rodent studies raises the possibility that overlapping subtypes are being missed.

The researchers put forward the hypothesis that the co-existence of distinct BC subtypes within tumors happens because a fraction of BC cells retain many stem cell -like qualities and thus reserve the capability to easily change. This has been observed in human cancer cells and in rodent studies but has yet to be confirmed in patients. Single-cell analysis could assess whether this problem is common or rare in humans.

They advocate for diagnostic testing to be combined with single-cell technologies, in which individual cells are screened (via mass spectrometry, DNA sequencing, etc) for molecular markers. However, single-cell approaches are currently expensive and require specialized expertise, so they are not yet realistic for regular patient screenings.

"What we're talking about is still not widely used in practice--there's a gap between basic cancer research and the clinics that do the diagnoses," Prof. Guan said, "However, single-cell technologies are advancing very quickly, so it's possible that we can see them being used in the near future."

The paper, by Yeo SK and Guan J-L, was published October 24, 2017, in the journal Trends in Cancer.

Related Links:
University of Cincinnati College of Medicine


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.