We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New 3D App Provides More Accurate Cancer Diagnosis

By LabMedica International staff writers
Posted on 16 Oct 2017
With further development of light-sheet microscopy based 3D imaging, researchers were able to examine tumor biopsy tissue in more detail than current 2D methods, resulting in improved intratumoral heterogeneity phenotyping and diagnosis of solid tumors.

Vast numbers of tumor tissue samples are examined by pathologists around the world, whose pronouncements inform the treatment patients are given. More...
Mistakes can result in more suffering and sometimes death. Current pathological examination methods for assessing tumors use two-dimensional (2D) light microscopy, which can cause a major information gap in studying 3D objects.

“To be sure, the tumors can be divided into sections for individual study, but 3D structures such as the blood and lymph systems are very hard to study in this way,” said study lead investigator Per Uhlén, professor at Karolinska Institutet (Solna, Stockholm, Sweden). To better study human tumor tissue, the researchers applied an imaging technique, currently being used in basic research, that involves making the tissue transparent (clearing) and then reproducing it in 3D in a light-sheet microscope. For example, upon labeling with specific antibodies, certain proteins can be analyzed in more detail.

“Light-sheet microscopy has been used in basic research for a while, but it is only in recent years that it’s been refined so much that it can be used practically in hospitals,” said Prof. Uhlén, “It was an unforgettable experience to look inside a tumor from a patient for the first time.”

Working with clinicians from Karolinska University Hospital, the researchers were able to study stored samples from patients with bladder cancer and then by 3D reproduction of, amongst other structures, the blood system feeding the tumors, they could find more information about how aggressive the tumors are. The new technique also enabled more accurate diagnosis of muscle-invasive tumors, which can be missed with 2D methods.

“We’ve also studied other cancer types and judge that the method has considerable potential in the clinical diagnosis of all forms of solid tumors, especially cases that are difficult to diagnose,” said Prof. Uhlén.

The light-sheet microscope used for the study is one of only a few in Sweden and is housed at the core facility CLICK – the Center for Live Imaging of Cells at Karolinska Institutet.

The study, by Tanaka N et al, was published October 2, 2017, in the journal Nature Biomedical Engineering.

Related Links:
Karolinska Institutet


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.