We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Liquid Biopsy Blood Tests Detect CtDNA

By LabMedica International staff writers
Posted on 12 Jul 2017
The so-called “liquid biopsies” blood tests that detect circulating tumor DNA (ctDNA), may not only sound an early alert that a treatment’s effect is diminishing, but may also help explain why, and sometimes offering clues about what to do next.

The understanding of the mechanisms of acquired resistance to targeted therapy can guide strategies to improve clinical outcome and ctDNA provides a non-invasive means to identify concurrent heterogeneous resistance mechanisms emerging during therapy.

An international team of scientists led by those at Massachusetts General Hospital (Boston, MA, USA) collected plasma collected at disease progression for next-generation sequencing of ctDNA from 35 patients with molecularly-defined gastrointestinal (GI) cancers: 24 colorectal (CRC), eight biliary, three gastroesophageal (GE), achieving response or prolonged stable disease on targeted therapies. More...
Molecular alterations identified were compared to ctDNA and/or tissue obtained pre-treatment to identify mechanisms of acquired resistance. When possible, post-progression tumor biopsies were also analyzed. Serial ctDNA specimens were evaluated to determine if the change in ctDNA levels could predict response to targeted therapy.

The team found that in 35 patients, at least one molecular mechanism of resistance was identified in progression ctDNA in 28 patients (80%) with 15 (43%) exhibiting more than one resistance alteration (range 2-12, median 3). Overall, 72 total resistance alterations were identified. 14 patients had matched progression tumor biopsies, and resistance alterations were identified in nine (61%), all of which were detected in matched ctDNA. In 64% of these patients, additional resistance mechanisms not detected in the matched tumor biopsy, but were identified in ctDNA analysis. In seven patients with multiple progression tumor biopsies available, distinct metastases showed different resistance alterations, all of which were detectable in ctDNA, but in six (86%) of these patients, ctDNA detected additional resistance alterations not found despite multiple tumor biopsies, reflecting extensive heterogeneity.

The authors concluded that systematic ctDNA analysis at disease progression could effectively identify novel and heterogeneous mechanisms of acquired resistance in patients receiving targeted therapies for a range of molecularly defined GI cancers. Compared to parallel tumor biopsies, ctDNA more effectively captured the heterogeneity of acquired resistance mechanisms, which may be important to guide subsequent therapy. Real-time monitoring of ctDNA levels may also represent a potential approach to predict response and resistance to therapy.

Aparna Parikh, MD, a hematology oncology specialist and the senior author of the study, said, “We have shown that integrating regular liquid biopsies into our patients’ routine care is feasible and easily incorporated into clinical practice. This technology can precisely help us understand each patient’s individual disease course and allows us to tailor care based on an understanding of their specific disease biology.” The study was presented on June 30, 2017, at the ESMO 19th World Congress on Gastrointestinal Cancer, held in Barcelona, Spain.

Related Links:
Massachusetts General Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.