We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




FISH Method Developed for Analyzing Immune Response

By LabMedica International staff writers
Posted on 30 May 2017
Researchers have developed a method to analyze hundreds of thousands of cells at once using FISH-Flow for concurrent detection of mRNA and protein markers in single cells using fluorescence in situ hybridization (FISH) and flow cytometry. More...
The new protocol currently evaluates immune responses and could lead to faster and more accurate diagnoses of illnesses, including tuberculosis (TB) and cancers.

Researchers at Rutgers University developed the protocol to evaluate multitudes of cells at once for telltale mRNA species and proteins. The procedure currently provides an opportunity to observe how multiple kinds of immune cells are responding to a foreign substance (e.g. antigen), making it possible to detect the presence of disease earlier.

"This new process allows us to see how individual immune cells are reacting in real time without using artificial reagents that alter what the cells are doing when they respond to a foreign substance," said Maria Laura Gennaro, a professor at Rutgers' Public Health Research Institute (PHRI), who led development of the method with senior colleagues Yuri Bushkin, Richard Pine, and Sanjay Tyagi at PHRI. As the protocol could be used to identify indicators of other illnesses, they plan to study applying it to early diagnosis and treatment of various infectious and non-infectious lung diseases and certain cancers.

"This powerful diagnostic technology exploits a person's own immune system to assess their potential for developing a wide range of acute and chronic diseases – including those caused by infectious agents and those resulting from host dysfunction like cancer, asthma, or autoimmune disorders," said David Perlin, executive director of Rutgers’ PHRI.

The procedure can be particularly useful in finding ways to help identify people who are predisposed to developing TB, making it possible to treat them and help reduce the spread of the disease. Nearly 2 billion people worldwide are afflicted with latent TB, but many never develop full-blown TB. Currently, the only way to determine if latent TB is present is through skin and blood tests for immunological response to TB antigens. However, treatment is not widely offered to people with latent TB due to the prohibitive cost.

"If you can have a method that helps you determine who among the people who are latently affected by TB are predisposed to illness, you can target treatment of latent TB to those people and the risk of spread is reduced," Prof. Gennaro said.

The procedure detailed also includes a semi-automated version developed by Gennaro's research group in collaboration with engineers at San Jose, California-based BD Biosciences that makes the method faster and highly reproducible for clinical applications.

The study, by Arrigucci R et al, was published May 18, 2017, in the journal Nature Protocols.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.