Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Targeted Microbubbles Enhance Ultrasound Detection of Malignant Tumors

By LabMedica International staff writers
Posted on 11 Apr 2017
By combining standard ultrasound technology with a novel type of targeted microbubbles, cancer researchers have developed a sensitive method for detecting malignant tumors that could reduce the number of biopsies needed to differentiate them from benign growths.

Investigators at Stanford University prepared one to four micron diameter phospholipid microbubbles containing a mixture of perfluorobutane and nitrogen gas that were labeled with kinase insert domain receptor (KDR) protein. More...
The result was a class of targeted contrast microbubbles (MBKDR) that was targeted at KDR, one of the key regulators of neoangiogenesis in cancer. KDR is found on tumor blood vessels but not in healthy tissue.

The investigators designed a study to assess whether ultrasound using MBKDR was safe and would allow assessment of KDR expression using immunohistochemistry (IHC) as the gold standard. They injected MBKDR intravenously into 24 women (age 48 to 79 years) with focal ovarian lesions and 21 women (age 34 to 66 years) with focal breast lesions. Ultrasound analysis of the lesions was performed starting five minutes after injection for up to 29 minutes. Blood pressure, ECG, oxygen levels, heart rate, CBC, and metabolic panel were obtained before and after MBKDR administration. Persistent focal MBKDR binding by ultrasound imaging was assessed. Patients then underwent surgical resection of the target lesions, and tissues were stained for CD31 and KDR by IHC.

Results revealed that ultrasound imaging with MBKDR was well tolerated by all patients without safety concerns. Among the 40 patients included in the analysis, KDR expression on IHC matched well with imaging signal on ultrasound imaging in 93% of breast and 85% of ovarian malignant lesions. Strong KDR-targeted ultrasound signals were present in 77% of malignant ovarian lesions, with no targeted signal seen in 78% of benign ovarian lesions. Similarly, strong targeted signals were seen in 93% of malignant breast lesions with no targeted signal present in 67% of benign breast lesions.

"The difficulty with ultrasound right now," said first author Dr. Jürgen Willmann, professor of radiology at Stanford University, "is that it detects a lot of lesions in the breast, but most of them are benign. And that leads to many unnecessary biopsies and surgeries. To decrease those unnecessary biopsies and surgeries would be a huge leap forward. We could make ultrasound a highly accurate screening technology that is relatively low cost, highly available, and with no radiation. And since ultrasound technology is accessible almost everywhere, he said, the technology could potentially help patients all over the world."

The targeted microbubble technique was described in the March 14, 2017, online edition of the Journal of Clinical Oncology.


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.