We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Diagnostic Tool Designed for Familial Mediterranean Fever

By LabMedica International staff writers
Posted on 08 Dec 2016
A tool has been developed to diagnose Familial Mediterranean Fever (FMF) which is particularly common among populations originating from around Mediterranean Sea and this genetic disease is characterized by inflammation, fever and severe pain.

FMF is usually diagnosed during childhood, after which a daily, lifelong treatment is necessary. More...
However, accurate diagnosis is complicated by a number of factors: other auto-inflammatory diseases show similar symptoms, the clinical picture is often incomplete in young children, atypical signs may occur, and a suggestive family history is sometimes lacking. Wrong or late diagnosis often even leads to unnecessary surgery and, ultimately, kidney failure.

A large group of scientists led by those at the Inflammation Research Center, VIB, Zwijnaarde, Belgium) developed an alternative for today's inadequate diagnosis, efficiently segregating FMF patients from people suffering from other auto-inflammatory diseases and healthy individuals. The tool detects changes in the body's immune reaction to pyrin, a protein that is usually mutated in FMF. Following successful tests on mice, the tool has been validated in 13 patients in collaboration with physicians from Belgium and Italy.

The team used many different techniques during the study that included identification of FMF disease gene variants using genomic DNA, Transfection, Immunoprecipitation, the eluted samples were analyzed by SDS/PAGE, Western Blotting, Cytokine Analysis, Microarray Data Analysis, and Confocal Microscopy that was performed on a Zeiss LSM 780 confocal microscope (Zeiss, Jena, Germany) equipped with a Ti:Sa laser (Mai Tai DeepSee multiphoton laser; Spectra-Physics, Santa Clara, CA, USA), an Ar laser, and two diode lasers (561 nm and 633 nm).

The scientists established Clostridium difficile and its enterotoxin A (TcdA) as Pyrin-activating agents and show that wild-type and FMF Pyrin are differentially controlled by microtubules. Diverse microtubule assembly inhibitors prevented Pyrin-mediated caspase-1 activation and secretion of IL-1β and IL-18 from mouse macrophages and human peripheral blood mononuclear cells (PBMCs). Remarkably, Pyrin inflammasome activation persisted upon microtubule disassembly in PBMCs of FMF patients but not in cells of patients afflicted with other auto-inflammatory diseases. The team further demonstrated that microtubules control Pyrin activation downstream of Pyrin dephosphorylation and those FMF mutations enable microtubule-independent assembly of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) micrometer-sized perinuclear structures.

Mohamed Lamkanfi, PhD, a professor and a senior author of the study said, “As next steps, we are setting up clinical trials in Belgium for which we are actively seeking volunteers; both FMF patients and people suffering from related inflammatory disorders. We are also exploring possible collaborations with industrial partners in order to make our method available as a diagnostic kit.” The study was published on November 22, 2016, in the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
Inflammation Research Center
Zeiss
Spectra-Physics

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.