We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Epigenetic Biomarker Predicts Outcome of Childhood Brain Cancer

By Gerald M. Slutzky, PhD
Posted on 07 Dec 2016
Cancer researchers have identified a biomarker that predicts the likely outcome of the childhood brain cancer posterior fossa ependymoma (PF).

This type of cancer is characterized by tumors found largely in the hind brain (consisting of the cerebellum, pons, and the brainstem) of children. More...
The prognosis of these tumors does not necessarily correlate with clinical characteristics or even tumor grade, and there are no recurrent genetic mutations that can be used to classify these tumors.

An international team of researchers led by investigators at Children's Hospital Los Angeles (CA, USA) and the University of Michigan (Ann Arbor, USA) searched for other markers that might be used to classify PF tumors. To this end, they focused on the epigenetics of ependymoma tumors, specifically on the methylation pattern of histones in the tumor cells.

The investigators reported that most PF tumors lacked methylation of histone H3. Approximately 80% exhibited loss of the H3K27me3 biomarker, while 20% of tumors retained H3K27me3. By linking H3 methylation to clinical outcomes, the investigators showed that H3K27me3 immunostaining served as a biomarker for poor prognosis and delineated radiologically invasive tumors, suggesting that reduced H3K27me3 may be a prognostic indicator in PF ependymomas.

"Detection of H3K27me3 by immunohistochemical staining is a widely available and cost effective surrogate molecular marker. This test can be readily implemented in most departments of pathology and provides a much-needed tool to risk stratify and identify ependymoma patients who would potentially benefit from epigenetic therapies," said contributing author Dr. Alexander R. Judkins, head of pathology and laboratory medicine at Children's Hospital Los Angeles.

"By demonstrating the epigenetic mechanism - that we theorize likely goes awry during brain development - we will be better able to identify these tumors, determine a more accurate prognosis and - importantly -perhaps develop better therapeutic options," said senior author Dr. Sriram Venneti, professor of pathology at the University of Michigan.

The study was published in the November 23, 2016, online edition of the journal Science Translational Medicine.

Related Links:
Children's Hospital Los Angeles
University of Michigan

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.