We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Gene Discovered for Hereditary Colon Cancer

By LabMedica International staff writers
Posted on 08 Aug 2016
The formation of large numbers of polyps in the colon has a high probability of developing into colon cancer, if left untreated. More...
The large-scale appearance of polyps is often due to a hereditary cause; in this case the disease can occur in multiple family members.

Colon polyps form like mushroom-shaped growths from the mucosa and are several millimeters to several centimeters in size. They are benign and generally do not cause any symptoms, however, they can turn into malignant tumors or colon cancer. Physicians refer to the development of a large number of polyps in the colon as “polyposis.”

Scientists at the University of Bonn (Germany) and their colleagues investigated the genetic material (DNA) of polyposis patients using blood samples. They performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. In each patient, all of the about 20,000 protein-coding genes known were simultaneously examined. In this process, the scientists filtered the rare, possibly relevant genetic changes out of the gigantic quantity of data.

They identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MutS Homolog 3 (MSH3) on chromosome 5. Analysis of the diseased individuals’ tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue. By investigating the MSH3 gene, a clear diagnosis can be made prospectively in some other, previously unexplained polyposis cases. Afterwards, healthy persons at risk in the family can be tested for the mutations.

Stefan Aretz, MD, a professor and senior author of the study, said, “The challenge is proving the causal connection between the mutations in this gene and the disease. Only proven carriers would need to take part in the intensive surveillance program. The knowledge about molecular mechanisms which lead to cancer is also a precondition for the development of new targeted drugs.” The study was published on August 4, 2016, in the American Journal of Human Genetics.

Related Links:
University of Bonn


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.