We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Blood Test Developed to Detect Five Early-Stage Cancers

By LabMedica International staff writers
Posted on 28 Feb 2016
A blood test to diagnose common types of cancer is in development after it was found that five forms of the disease share a telltale chemical signature.

DNA from tumors can circulate in the bloodstream, and it has been proposed that it would be possible to detect this change and diagnose cancer from a standard blood test. More...
DNA methylation acts like a chemical “dimmer switch” on genes: an increase in methylation causes a decrease in gene activity.

Scientists at the US National Human Genome Research Institute (Rockville, MD, USA) and their colleagues focused on the possibility of using the enhanced methylation as a reliable indicator of cancer. The team compared 184 samples from five different tumor types with 34 normal, non-cancerous tissue samples. Importantly, they found that this genetic change was consistent across the five different types of cancer, suggesting that it could be used as a universal cancer marker. The study also showed that the enhanced methylation was detectable even at very low concentrations in the blood, meaning that a blood test could be used to identify cancer from early-stage tumors.

The team found that tumors in colon, lung, breast, stomach and endometrium share a change in a gene called zinc finger protein 154 (ZNF154). They measured the magnitude and pattern of differential methylation of this region across colon, lung, breast, stomach, and endometrial tumor samples using next-generation bisulfite amplicon sequencing. They found that all tumor types and subtypes are hypermethylated at this locus compared with normal tissue. To evaluate this site as a possible pan-cancer marker, they compared the ability of several sequence analysis methods to distinguish the five tumor types from normal tissue samples. Furthermore, in a computational simulation of circulating tumor DNA, they were able to detect limited amounts of tumor DNA diluted with normal DNA: 1% tumor DNA in 99% normal DNA.

Laura Elnitski, PhD, a senior investigator and coauthor of the study, said, “'We have laid the groundwork for developing a diagnostic test, which offers the hope of catching cancer earlier and dramatically improving the survival rate of people with many types of cancer. Finding a distinctive methylation-based signature is like looking for a spruce tree in a pine forest. It's a technical challenge to identify, but we found an elevated methylation signature around the gene known as ZNF154 that is unique to tumors.” The study was published on February 5, 2016, in the Journal of Molecular Diagnostics.

Related Links:

US National Human Genome Research Institute



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.