We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Thermo Fisher Scientific

Thermo Fisher Scientific Inc. serves customers who are accelerating life sciences research, solving complex analytica... read more Featured Products: More products

Download Mobile App




DNA Alterations Identified Occur Earliest in Lung Cancer Development

By LabMedica International staff writers
Posted on 30 Sep 2015
Lungs resected for adenocarcinomas often harbor minute discrete foci of cytologically atypical pneumocyte proliferations designated as atypical adenomatous hyperplasia (AAH), which may represent an initial step in the progression to adenocarcinoma in situ (AIS).

DNA alterations in the tissue and blood of people with precancerous and cancerous lung lesions has been identified in what it believes are among the very earliest "premalignant" genetic changes that mark the potential onset of the most common and deadliest form of disease. More...


Scientists at Johns Hopkins University School of Medicine (Baltimore, MD, USA) collected retrospectively formalin-fixed, paraffin-embedded (FFPE) lung cancer specimens harboring multiple AAH lesions and AIS or minimally invasive adenocarcinoma (MIA) tumors. DNA was extracted from 25 distinct AAHs incidentally discovered in the lung resection specimens from six patients with invasive adenocarcinoma. Samples from AIS and MIA tumors extracted from five patients each were collected from different zones of histologic progression within the same lesion. Three or four histologically different zones were collected from each AIS and MIA samples respectively.

DNA was extracted using standard protocols and quantified with the Nanodrop system (Thermo Scientific; Wilmington, DE, USA). The CancerSelect-R panel was used to analyze the regions of 125 well-characterized cancer genes to identify tumor-specific (somatic) mutations, copy number changes and translocations. Paired-end sequencing, resulting in 150 bases from each end of the fragments, was performed using a MiSeq System (Illumina; San Diego, CA, USA). All droplet digital polymerase chain reactions (ddPCR) assays used in the study were designed and optimized to work in the ddPCR system by Bio-Rad (Hercules, CA, USA).

The team found that V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein p53 (TP53) and epidermal growth factor receptor (EGFR) mutations are indicators of malignant transition. Utilizing droplet digital PCR, they found alterations associated with early neoplasms in paired circulating DNA. When the team further explored different regions within the same lesion, they found genetic differences even within the same lesion. Mutations associated with good and poor prognosis or responses to therapy were seen in different regions of the same tumor, highlighting the limitations of single biopsies commonly used to decide patients' therapies.

David Sidransky, MD, a professor of oncology and pathology and senior author of the study said, “This study takes detection to a whole new level in terms of size of the lesion. I'm not aware that circulating DNA from precancerous lesions this small has ever been identified before.” As they detected the mutations in the fluids, even mutations found in only one specific zone of a lesion, Prof. Sidransky added, “That this finding may indicate that a blood or sputum test could better represent the overall composition of a tumor than a single biopsy sample.” The study was published on September 16, 2015, in the journal Nature Communications.

Related Links:

Johns Hopkins University School of Medicine 
Nanodrop 
Illumina



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.