Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Thermo Fisher Scientific

Thermo Fisher Scientific Inc. serves customers who are accelerating life sciences research, solving complex analytica... read more Featured Products: More products

Download Mobile App




Biomarker Identified in Breast and Prostate Cancers

By LabMedica International staff writers
Posted on 25 Aug 2015
A novel genetic biomarker has been identified responsible for the progression of many breast and prostate cancers and these finding could bolster efforts to better identify patients who respond to certain types of chemotherapy drugs that attack the most aggressive forms of cancer.

Metastatic dissemination is a multistep process that involves cell migration, invasion and growth at distant sites and the “amoeboid” phenotype has emerged as a migratory mechanism that facilitates metastasis. More...
Amoeboid behavior is prominent at the invasive front of tumors, confers rapid migration rates and enables survival within the vasculature.

Scientists at Cedars-Sinai Medical Center (Los Angeles, CA, USA) and their colleagues investigated whether the loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes, which are widely employed chemotherapies for patients with metastatic prostate and breast cancer.

Different patient cohorts were analyzed for DIAPH3 gene expression profiles and various other techniques were used in the study. These included the identification of DIAPH3 interactomes where tryptic peptides were extracted, concentrated, reconstituted in 0.1% formic acid, separated on a 25 cm EASY-Spray C18 column, and analyzed by an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific; Waltham, MA, USA). Live cells were imaged using a Nikon Ti inverted confocal microscope (Nikon Instruments Inc.; Melville, NY, USA) coupled to a Spinning Disk head (Yokogawa Electric Corporation; Tokyo, Japan).

The scientists found that that loss of DIAPH3, frequently associated with metastatic breast and prostate cancers, correlated with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes.

Shlomo Melmed, MD, director of the Burns and Allen Research Institute at Cedar-Sinai, said, “By identifying cancer biomarkers, then customizing treatment plans for individuals based on this genetic information, we can greatly improve the effectiveness of cancer therapies. This customized plan replaces a one-size-fits-all approach to cancer treatment.” The study was published online on July 16, 2015, in the journal Scientific Reports.

Related Links:

Cedars-Sinai Medical Center
Thermo Scientific 
Nikon Instruments Inc.



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.