We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Telomere Biomarker Blood Test Predicts Cancer Years In Advance

By LabMedica International staff writers
Posted on 12 May 2015
Telomeres are sequences of DNA on the ends of chromosomes that stop them fraying and losing their integrity, but they gradually shorten as one ages and by the time one grow up they are half the length they were when a person was born, then they halve again as they enter old age.

Telomeres shorten every time a cell divides, which is why they get progressively shorter as they age and if the telomeres of a cell become too short, they can cause the cell to become faulty, and normally the cell self-destructs. More...
However since cancer cells divide more rapidly than normal cells, the question arises why they do not self-destruct when their telomeres become dangerously short.

Scientists at Northwestern University Feinberg School of Medicine (Chicago, IL, USA) measured telomere length several times over a 13-year period in 792 people. One hundred and thirty-five of the participants eventually developed various cancers, including leukemia, and prostate, skin and lung cancer. The telomeres of the participants who were later diagnosed with cancer aged much faster, that is they shortened more rapidly, in the first few years. In the participants who developed cancer, the telomeres looked as much as 15 years older than those of the participants who did not develop cancer. But what was surprising was that the accelerated aging stopped three to four years before cancer diagnosis.

The authors concluded that relative to approaching cancer diagnosis, age-adjusted blood telomere length (BTL) attrition decelerated in cancer cases, ultimately yielding significantly elongated BTL and suggesting that critical BTL shortening may contribute to cancer initiation which then, in turn, activates telomere maintenance mechanisms to compensate and further promote cancer. These results may help explain the inconsistent results of previous studies and provide more insight into using BTL as an early detection biomarker of cancer.

Lifang Hou, MD, PhD, the lead study author, said, “Understanding this pattern of telomere growth may mean it can be a predictive biomarker for cancer. Because we saw a strong relationship in the pattern across a wide variety of cancers, with the right testing these procedures could be used to eventually diagnose a wide variety of cancers.” The study was published online on the April 30, 2015, in the journal EbioMedicine.

Related Links:

Northwestern University Feinberg School of Medicine



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.