We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




British Genomic Study Finds Fifteen New Breast Cancer Loci

By LabMedica International staff writers
Posted on 22 Mar 2015
British genomic and cancer researchers have identified 15 previously unknown loci associated with the risk of developing breast cancer.

Approximately one in every eight women in the United Kingdom will develop breast cancer at some stage in their lives, and about 5% of these women carry genetic variations that double their risk of developing breast cancer. More...
A much smaller group comprising about 0.7% of women have genetic variations that make them three times more likely to develop the disease. The purpose of this study was to find genetic markers that can help identify women at high-risk and lead to improved cancer screening and prevention.

Investigators at the University of Cambridge (United Kingdom) and colleagues in the Breast Cancer Association Consortium, part of the Collaborative Oncological Gene-environment Study, performed a meta-analysis of 11 GWAS (genome-wide association study), comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry.

The investigators generated genotypes for more than 11 million SNPs (single nucleotide polymorphisms) by imputation using the 1000 Genomes Project reference panel and identified 15 new loci associated with breast cancer.

The 1000 Genomes Project, launched in January 2008, is an international research effort to establish a detailed catalogue of human genetic variation. The project unites multidisciplinary research teams from institutes around the world, including China, Italy, Japan, Kenya, Nigeria, Peru, the United Kingdom, and the United States. Each team contributes to the enormous sequence dataset and to a refined human genome map, which is freely accessible through public databases to the scientific community and the general public alike. By providing an overview of all human genetic variation, not only what is already known to be bio-medically relevant, the consortium generates a valuable tool for all fields of biological science, especially in the disciplines of genetics, medicine, pharmacology, biochemistry, and bioinformatics.

Senior author Dr. Doug Easton, professor of public health and primary care at the University of Cambridge, said, “Our study is another step towards untangling the breast cancer puzzle. As well as giving us more information about how and why a higher breast cancer risk can be inherited, the genetic markers we found can help us to target screening and cancer prevention measures at those women who need them the most. The next bit of solving the puzzle involves research to understand more about how genetic variations work to increase a woman’s risk. And we are sure there are more of these variations still to be discovered.”

The study was published in the March 9, 2015, online edition of the journal Nature Genetics.

Related Links:

University of Cambridge



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.