We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Breast Cancer Test Links Immune Hotspots to Better Survival

By LabMedica International staff writers
Posted on 15 Mar 2015
A new test has been developed that can predict the survival chances of women with breast cancer by analyzing images of hotspots where there has been an intense immune reaction to a tumor. More...


The test that combines automated histological image processing with methods of spatial statistics could assess whether a woman's immune system is holding a cancer at bay and pick out those who will need intensive treatment to combat their more aggressive disease.

Scientists at The Institute of Cancer Research (London, UK) and their colleagues analyzed tumor samples from 245 women with a type of breast cancer called estrogen receptor negative (ER negative), which is particularly hard to treat. The team split women with breast cancer into two groups based on the numbers of immune hotspots spots within their tumors.

The tumor sections were scanned using ScanScope TX Scanner (Aperio Technologies; Vista, CA, USA) with × 20 magnification and digitized for image analysis. Stained frozen tumor section images for 245 ER-negative breast cancer patients were analyzed using their automated cell classification pipeline CRImage. The cell classification and location data were used as input for Getis–Ord hotspot analysis to enable the automated detection of statistically significant spatial clusters.

The scientists found that images of hotspots where immune cells were spatially clustered together around breast cancer cells provided a better measure of immune response than simply the numbers of immune cells within a tumor. Women whose cancers had a high number of spots lived an average of 91 months before their cancer spread, compared with just 64 months for those with a low number of spots. The test is the first objective method of measuring the strength of a patient's immune response to their tumors. Its automated analysis could complement existing methods where pathologists examine tumor samples under the microscope to gain a sense of whether there is a strong immune response.

Yinyin Yuan, PhD, the team leader and senior author, said, “We have shown that to measure the strength of an immune response to a cancer, we need to assess not just how many immune cells there are, but whether these are clustered together into cancer-busting hotspots. By analyzing the complex ways in which the immune system interacts with cancer cells, we can split women with breast cancer into two groups, who might need different types of treatment.” The study was published on February 27, 2015, in the journal Modern Pathology.

Related Links:
The Institute of Cancer Research  
Aperio Technologies  



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.